
1

Service Pattern: An Integrated Business
Process Model For Modern Service Industry

Jianwei Yin, Zhiling Luo, Ying Li, and Zhaohui Wu

Abstract—Modern Service Industry (MSI) is becoming a leading and pillar industry in recent years. Its theory construction, however,
has not kept up with the industry development. Specifically, the business process designing and reconstructing, the critical part in
business transformation and competition of Modern Service Enterprise, are still handled manually. The existing models, e.g. BPMN
and EPC, mainly adopt the business activities and events without considering the resource and data generated and consumed in
interaction with business collaborators, which is ubiquitous in MSI business process. Hence, the deficiency of resource and data in
these models hindered them from popularization in MSI. In this paper, with a systematic analysis of the above issues, we introduce the
service pattern of MSI business process from the point view of resource and data with formalized description and some concrete basic
patterns. To support the process designing and reconstructing better, we propose a pattern-centered formalization language, called
SPDL (Service Pattern Description Language). Furthermore, a service pattern matching approach, in the Constructing-As-Identifying
style, is studied and a service process designing tool, called SPDL-Editor, is developed. Additionally, a case of the famous
video-on-demand service (Youku) in China is given, though out of this paper, for a better understanding of our theories.

Index Terms—service pattern, modern service industry, business process, process design, process reconstruction

F

1 INTRODUCTION

Business process model, depicting the critical enter-
prise business with a directed graph, underlies many com-
plex applications such as process designing, reconstructing,
reusing, log analysing, frequent process discovery and run-
time monitoring [1]–[3]. With the gradual development and
revolution in business transactions and its context, the re-
searches on classical business process model, BPM [4] for
short, e.g. BPEL (Business Process Execution Language) [5],
EPC (Event-driven Process Chains) [6], BPMN (Business
Process Modeling Notation) [7] and YAWL (Yet Another
Workflow Language) [8], are facing a new challenge. Specif-
ically, Modern Service Industry (MSI), a leading and pillar
industry in recent years, cannot adopt classical BPM in its
process modeling, because more complex data and resource
exchange with various collaborators are involved [9]–[11].

The data and resource exchange, denoting the proce-
dure that one participant gives some data or resource
to another participant and get some data or resource in
return, is common in MSI. For example, Coco-Cola Inc.
puts its advertisements on the web site of Facebook Inc.,
namely http://www.facebook.com. In this procedure, Coco-Cola
Inc. gives some money, one kind of resource to Facebook Inc.
and get the customer traffic, another kind of resource, from
http://www.facebook.com in return. That is to say, Coco-Cola
Inc. exchanges resource (money and customer traffic) with
Facebook Inc. in this procedure.

The importance of the data and resource exchange in
business interaction with collaborators is approved by ad-
ministrators. The resource and data exchange information,
as a critical business secret, is quite important for the enter-
prise and its competitors. For instance, once a competitor
knows who provides the Ad. on the Facebook Inc. and

Jianwei Yin, Zhiling Luo, Ying Li and Zhaohui Wu are both with the College
of Computer Science, Zhejiang University, Hangzhou, 310027, China.
Ying Li is the corresponding author and his e-mail is cnliying@zju.edu.cn.

what the price is, namely cost per presentation (CPP), the
competitor can estimate Facebook Inc.’s advertising revenue
and make a pertinent business plan.

Though the importance of data and resource exchange
is approved by the administrators, classical BPMs fail to
provide a practical analysing tool. The reason is that these
models focus on the process structure and ignore this data
and resource exchange among various collaborators. Specifi-
cally, in classical BPM, data and resource are both abstracted
as the attribute of the entity. The data dependency describes
the activity executing order due to the data life cycle. How-
ever, the data and resource exchange is hidden behind the
activity. Both the process designer and enterprise manager
in MSI cannot get more detailed supports from classical
BPMs.

In this paper, witnessing the importance in business
competition, we introduce the pattern of MSI, called ser-
vice pattern, supporting the data and resource exchange
analysing. Service pattern is the abstraction of the busi-
ness process from three perspectives: workflow, data and
resource. Though workflow pattern [12], [13], process data
[14] and resource pattern [15], [16] are studied in different
domains, there is still a great gap between these models.
We integrate these three perspectives in service pattern, and
propose a pattern-centered formalization language, called
SPDL (Service Pattern Description Language). The concrete
concept definitions and deducing rules, presented by type
theory [17] and λ-calculus, are both discussed. To better
support business analysing, we introduce a service pattern
matching approach in the Constructing-As-Identifying style
[18]. We convert the matching into the type identification
in Coq1, a type theory based theory proving tool [19].
These formalization definitions build a solid foundation and

1. https://coq.inria.fr

2

Fig. 1: The resource flow diagram of Youku. From Youku’s
point view, there are three resources: video, customer traffic
and money.

ensure the correctness of business analysing and deducing
result for our techniques. Besides, we develop a business
process modeling tool, called SPDL-Editor2, implementing
our theories and techniques.

Our major contributions in this paper are summarized
as follows:

• an integrated business process model, called service
pattern, from three perspectives: workflow, data and
resource;

• a pattern-centered formalization language, called
Service Pattern Description Language, supporting
business process designing and business analysing
on data and resource exchange;

• and an approach to match service pattern and service
process in the Proving-As-Identifying style.

The rest of this paper is organized as follows. Section
2 introduces the motivation example. Section 3 discusses
the problem definition and the overall framework Section
4 briefly introduces the preliminaries including λ-calculus,
Type Theory and some notations. Section 5 illustrates SPDL
and concrete formalization. Section 6 presents the definition
of service pattern. Section 7 studies the problem of service
pattern matching (SPM) and introduces our approach. Sec-
tion 8 briefly introduces the tools supporting SPDL and our
service pattern matching approach. We discuss the effect
and efficiency of our approach in Section 9. Finally, Section
10 discusses related work and Section 11 concludes this
paper.

2 MOTIVATION CASE

To study the unfit of classical BPMs in supporting resource
and data exchange, we discuss the example of Youku, a
typical Modern Service Enterprise in China. The on-line ser-
vice, youku.com, is the biggest video watching and sharing
web site now, which was founded in 2006 and has attracted
150 million customers per day since Apr. 2013. From the
perspective of classical BPMs, Youku’s core business com-
prises four basic aspects, which are extracted into following
process fragments.

2. http://ccnt.zju.edu.cn/spdl

• Process 1: A customer can upload his/her video
in youku.com. Then, this video can be stored and
exhibited in this web site.

• Process 2: A customer can explore the web site and
select a video to watch. The video can be played
directly if the customer is VIP, otherwise some ad-
vertisements must be watched at first.

• Process 3: The advertiser will pay to Youku for the
presentation of its Ad based on the presentation
times.

• Process 4: A normal customer can apply for VIP by
paying some money to Youku.

Outwardly, we do get the information about concrete ac-
tivities, their orders and even the control conditions from
the point view of BPM. Nevertheless, data and resource
exchange in these processes cannot presented intuitively.
Specifically, from the perspective of Youku there are three
kinds of resources involved in Youku’s business described
as follows and the resource flow are depicted in Fig. 1.
• Video is shot or produced by the customer. Youku

gets the copyright of the video and gives some user
point to the uploader in process 1.

• Customer traffic, the core resource for most Internet
companies (e.g. Google and Facebook), means the
mount of customers visiting a web site per unit time.
Youku attract customer and accumulate customer
traffic with free video watching service in process 2.

• Money is the essential quantitative resource com-
prises two parts: paid by advertisers in process 3
and paid by customers in process 4. There are two
resource exchanges occurred in this resource. On
one hand, Youku provides the customer traffic to
advertisers through presenting Ad. and gets money
in return. This is the most important component of
Youku’s business model On the other hand, Youku
exchange the customer traffic with the customers
themselves in process 4. Once a customer apply to
VIP, his/her traffic on this web site cannot be used
to exchange with other resource, e.g. the money of
advertisers, by Youku.

3 PROBLEM DEFINITION AND SOLUTION FRAME-
WORK

Motivated by the scenario mentioned before, we witness
that the data and resource exchange is a critical aspect in
business process management. However, none of classical
BPM covers it very well. Therefore the problem we’d like to
address is how to analyze the data and resource exchange
in a business process.

Problem: Given a group of processes
t1, t2, ..., tM , finding out a service element set
E = Activity|Gateway|Event|Actor|Data|Resource, a
connector set L and a group of map F where ti = Fi(E ,L),
such that any new process tj , can be easily construceted as
Fj(E ,L).

As illustrated in Fig. 2, our solution framework consists
of four layers.

1) The first layer is the theory foundation. We employ
λ-calculus and type theory as our formalization
basic framework, which are studied in section 4.

3

Fig. 2: The overall solution framework.

2) In second layer, we provide the definition of service
element E and connector L.

3) The third layer is the major contribution of our
work. We provide the formalization of service pat-
tern, a group of basic service patterns and the com-
position rule to generate new service pattern.

4) In the top layer, the data and resource exchange
in the process t can be studied using the service
pattern.

4 PRELIMINARY

Before discussing our theory, we briefly introduce two pre-
liminary theories in this section. We employ the concept
about term and some useful logical rules from λ-calculus.
For better describing the operations on data and resources
in a semantic way , we employ the type construction way
from Type Theoery (TT). Also, we summarize the notations
used in this paper.

4.1 λ-calculus
λ-calculus is a formal system in mathematical logic and
computer science for expressing computation based on
function abstraction and application using variable binding
and substitution. The complexity of the related theory about
λ-calculus prevent us to provide a completed introduction.
Therefore we only three basic concepts.

4.1.1 Lambda term
λx.x2+1 is a simple lambda term expressing a function using
x as the input and outputting x2 + 1. In this expression, x is
the variable and this term is a lambda abstraction on x.

ν := λx : nat.x2 + 1 is a typed lambda term, in which, x is
an instance of nat (means nature number). The type of ν is
nat→ nat.

Though used variously in different domain, lambda term
is used to present the operation in our theory.

4.1.2 Beta reduction
A β reduction provides a way to replace the variable in
lambda term to a concreted case. The simple example is

ν 6 = (λx : nat.x2 + 1) 6

= 62 + 1 = 37.

TABLE 1: Logic connectives and type connectives
Logic Type
A ∧B Product type (×)
A ∨B Sum type (+)
A→ B Function type (

∏
(A, (x)B))

∀(x : A)B(x) Dependent Product type (
∏

(x : A)B(x))
∃(x : A)B(x) Dependent Sum type (

∑
(x : A)B(x))

False Empty type (⊥)
True Unit type (>)

The β reduction provides a clear way to describe the relation
between operation and concreted object. In this example, the
lambda term nu is the operation and 6 the concreted object.
With the help of TT, we convert this feature to the semantic
expression in our SPDL.

4.1.3 Cartesian Product
A Cartesian Product is a dependent type.

V := ν1, ν2, ..., νn :
∏

x : nat.x2 + 1 (1)

In formula (1), V is defined as the a cartesian production.
For any instance νi : V , we have νi : λx : nat.x2 + 1.

4.2 Type Theory
Type theory (TT for short) is a logic system used as the
foundation of mathematics and computing [17], [20]. It
provides computer scientists with a framework to combine
logic and computer system design in an elegant and flexible
way. Comparing to other formal method theory, TT has
following advantages.

• Semantic Expression. The semantic information is
present in the type of each element. And it makes the
expression more similar to human language. For ex-
ample, the definition of reading book is read book :
Activity where read : Object → Activity and
book : Object.

• Curry-Howard isomorphism. A proposition (e.g. a
service process matches a service pattern) can be
proved by constructing an instance for this propo-
sition type. If there is an instance can be constructed,
the proposition is true, and false versa. This is a
called Constructing-As-Identifying style [18].

In TT, like most formalized framework, type can be
constructed by existing types (such as nat, means nature
type) and type connectives (such as

∏
,
∑

) recursively.
The corresponding of type connectives and normal logic
connectives are shown in Table 1. Table 2 shows some
notations and Table 3 the logic rules used in the rest of this
paper.

5 SERVICE ELEMENT IN SPDL
The important service elements and business rules in SPDL
are formalized in this section by TT. Some notations used
in this section can be found in Tab. 2. The paragraph
started with Example means the example of corresponding
definition in Youku. All service elements are defined in the
service context E and the business rules are defined in the
system context Γ.

4

TABLE 2: Some extended notations in this paper
Notation Meaning
B := C B can be written as C
c : C c is an instance of type C

νJAK
A is the explanation of ν and A is the name

used in Coq
b ∈list B b is an element of list B
A ⊆list B Any elements in list A are also in list B

σB(a)
The attribute a (the parameter in construction of

B) in B
A :: B Connecting A and B to a list
nil The empty list
F [β] Term F contains β as a variable.

TABLE 3: Some logic rules used in this paper
Rule name Meaning Expression

Intro Rule
Introduce a variable
from context

Γ, a : A `
Γ ` a : A

Extract Rule
Extract a dependent
product type

Γ, a1 : A ` f(a1) : F

Γ ` f :
∑

(a : A).F

Apply Rule
Apply a function on
a variable

Γ, a : A ` t : A→ B

Γ ` t a : B

Product Rule
Construct a product
type

Γ ` a : AΓ ` b : B

Γ ` a× b : A×B

5.1 Resource

We classify the resources into two types: money and value
object. Because money is easily quantitative and it reflects
the profitability of the business process directly. The goods,
equipments and fields are value objects which lack a unified
quantitative metric. It means that except money, other object
which is valuable in business process belongs to value
object. We can concentrate on their life cycle in the process
and it helps to enrich the semantic information of activities.
The formalization of resource in Backus-Naur-Form (BNF) is
depicted in (2).

Resource := Money|(λidr : nat.V alueObject) (2)

The function λidr : nat.V alueObject[idr] in typed λ
calculus form, constructor of the value object with the
parameter idr , helps to define value object. The nat is short
for nature number. Formula (2) means a resource instance
can either be an instance of money type or an instance of
dependent type, called V alueObject.

Fig. 3: The notations of SPDL diagram.

Example: The video, defined by (3), is an important kind of
value object (1431 is the global id).

V ideo := (λidr : nat.V alueObject) 1431 (3)

The global id is a nature number used in many examples
follows. The notations in Fig. 3 (a) are money and value
object, from top to bottom, resp. There are four basic opera-
tions on the resource: creating, using, exclusively using and
consuming.

• Creating: generating a resource instance from an
activity.

• Using: using a resource instance in an activity.
• Exclusively using: using a resource instance in an

activity, but forbid using from other actor instances
at the same time.

• Consuming: using up a resource instance in an ac-
tivity.

The operations (creating, using, exclusively using and
consuming) on resource belong to the type of a Cartesian
Product:

fOpr :=νcrJCreaterK|νurJUserK|νerJExclusiveUserK
|νorJConsumerK :

∏
r : Resource.Opr(r).

(4)

In (4), ν presents an operation, the r in subscript means
resource.

Example: Watching a video can be expressed as follows. In
(5), Video is a kind of resource.

WatchV ideo := νur V ideo (5)

5.2 Data

Data is the attribute of the entity in the business process.
The formalization of data in BNF is present in (6).

Data := λidd : nat.µdJDataConstructorK (6)

In (6), µ declares a constructor, the subscript, and d,
means constructing a data type. The notation in Fig. 3 (d)
is data. Differing from the operation on resource, there are
only three operations on data (creating, consuming and us-
ing). The data cannot be exclusively used because different
actor instances can read the same data at the same time. This
is the most important difference between data and resource.
These operations are also in the type of Cartesian Product.

fOpd
:=νcdJCreatedK|νudJUsedK|νodJConsumedK

:
∏

d : Data.Opd(d)
(7)

Example: The identification of customer is an important data.
A customer can be either a normal one or a VIP. The global id of
VIP is 2432 and Normal 2433.

V IP :=µd 2432 Normal := µd 2433 (8)

5

5.3 Actor
The actor is also called participant or collaborator in some
process models. While in SPDL, we use the concept of actor
to include the service provider itself. There are two kinds of
actor: the service provider and the participant. The service
provider, as a special actor, means the one who owns the
process. In the example of Youku, the service provider is
Youku itself. The actor is formalized as follows:

Actor := Provider|(λida : nat.Participant) (9)

The actor is present in Fig.3 (e) with Participant on the
top and Provider on the bottom.

Example: The customer of Youku, the id is 3104, can be
defined as follows.

Customer := (λida : nat.Participant)3104 (10)

5.4 Event
There are two basic events in SPDL, start event and end
event. In Fig. 3 (f), the left is the start event and right the
end event. To support more events in BPMN, we provide a
constructor with an id as a parameter and the formalization
of event is present in (11).

Event := Start|End|(λide : nat.µeJEventInK) (11)

5.5 Gateway
We have defined a basic gateway, the exc, namely the
exclusive gateway (XOR), and more gateways can be de-
fined by the constructor, GatewayIn. The notation of exc is
presented in Fig. 3 (g).

Gateway := Exc|(λidg.µgJGatewayInK) (12)

5.6 Line
Line is also called connector in some models. There are 6
kinds of line, as Fig. 3 (b) from top to bottom.

• Creating line: this line connects from an activity to
a resource (or data). It means the connected resource
(or data) is generated by the connected activity.

• Consuming line: this line connects from an activity
to a resource (or data). It means the connected re-
source (or data) is used up by the connected activity.

• Using line: this line connects from an activity to a
resource (or data). It means the connected resource
(or data) is used by the connected activity.

• Exclusively using line: this line connects from an ac-
tivity to a resource. It means the connected resource
is used by the connected activity and at the same
time this resource cannot be used by other actors.

• Sequence line: this line connects from an activity to
another one. It means the latter activity cannot be
executed until the former one is finished and these
two activities belong to the same actor.

• Message line: this line connects from an activity to
another one. It means the latter activity cannot be
executed until the former one is finished and these
two activities do not belong to the same actor.

The first four lines are used to present the data flow and
resource flow. The last two lines, present the work flow, are
formalized as follows:

LineP :=λlpa : Activity.µlpaJLinePAK
|λlpe : Event.µlpeJLinePEK
|λlpg : Gateway.µlpgJLinePGK

Line :=λls : LineP.λlt : LineP.µlJLineInK

(13)

In (13), LineP is the port and Line is the combination of
two ports (source port and target port).

5.7 Activity

The activity notation is present in Fig. 3 (c). And the formal-
ization of activity is shown in (14):

Activity :=λap : Actor.λar : list(Opr).

λad : list(Opd).

µaJActivityConstructorK
(14)

The first parameter is the actor, the second is the resource
operation list (including four kinds) and the third is the data
operation list (including three kinds).

Example: Uploading video is an activity which can be ex-
pressed by (15). A simple explanation of this formula is that the
activity named upload is executed by a customer and creates an
instance of video.

Upload := µa(Customer (νcrV ideo :: nil)nil) (15)

5.8 Activity Pattern

Activity Pattern is an λ-abstraction of the activity, as de-
picted in (16).

ActivityPattern :=λapp : Actor.λapr : list(Opr).

λapd : list(Opd).

µapJActivityPatternConstructorK
(16)

Definition (Activity Pattern rule): An activity a matches
an activity Pattern ap, written as ap � a, if and only if
they have the same actor and the latter’s list of resource
operations and data operations are sub-list of the former’s,
resp.

ap � a :=(σap(app)) = (σa(ap))

× (σap(apr)) ⊆list (σa(ar))

× (σap(apd)) ⊆list (σa(ad))

(17)

5.9 Business Rule

The business rules are defined in the type of dependent
type. Some useful business rules are present in (18):

The ConnectAAProp is the proposition checking
whether l connects from a1 to a2. The ConnectAEProp
and ConnectEAProp check the connection from activity to
event and event to activity. TheActivityRProp is the propo-
sition checking whether a involves r as a parameter. In the
similar way, ActivityDProp are defined. The ActorProp
checks whether p is the actor of a.

6

All these propositions defined above are the basic busi-
ness rules. Notation ψ represents a business rule.

In spite of basic business rule, we define a special rule,
named pattern rule which means the rule constraints on
the pattern. The pattern rule can be constructed by basic
business rules while it helps to design a new pattern rule.
Because of limit of the paper volume, we will not discuss the
equation of business rule and pattern rule, and the concrete
method of designing a new pattern by pattern rules.

ψCAAJConnectAAPropK := (σl(ls) = σlpa(a1))×
(σl(lt) = σlpa(a2)) :

∏
(l : Line)∏

(a1, a2 : Activity)Prop(l, a1, a2)

ψCAEJConnectAEPropK := (σl(ls) = σlpa(a))×
(σl(lt) = σlpe(e)) :

∏
(l : Line)∏

(a : Activity)
∏

(e : Event)Prop(l, a, e)

ψCEAJConnectEAPropK := (σl(ls) = σlpe(e))×
(σl(lt) = σlpa(a)) :

∏
(l : Line)∏

(e : Event)
∏

(a : Activity)Prop(l, e, a)

ψARJActivityRPropK := (σa(ar) 3list r)
:
∏

(a : Activity)
∏

(r : Opr)Prop(a, r)

ψADJActivityDPropK := (σa(ad) 3list d)

:
∏

(a : Activity)
∏

(d : Opd)Prop(a, d)

ψAJActorPropK := (σa(ap) = p)

:
∏

(a : Activity)
∏

(p : Actor)Prop(a, p)

(18)

ψ∗AP JActivityPatternPropK := ap � a :
∏

(a : Activity)∏
(ap : ActivityPattern)Prop(a, ap)

(19)
At last, we note that all these business rules, including pat-
tern rules and basic rules, are both defined as a dependent
type. Here we discuss whether a business condition is true
or not in a particular context.

Definition 5.1 (Truth Condition) In a service context E and
the system context Γ, a business rule Ψ is true if there is an
instance i in the type of Ψ can be constructed.

Truth condition can be proved by the Curry-Howard iso-
morphism [18] and we omit it here. An interesting fact is
that, the instance of basic business rules can be constructed
by the service elements directly and the instance of complex
one can be constructed by the existing instances of basic
ones. This is the called Constructing-As-Identifying style.

5.10 Youku
In this section, we provide the complete modeling details of
Youku by SPDL. The SPDL diagram of Youku is presented
in Fig. 4.

• In the first process, the customer uploads a video
to provider, namely Youku. A corresponding video
instance is created for Youku.

• In the second process, the customer browses the
web site and watches an Ad. if he/she is the nor-
mal customer than he/she watches the video. This

Fig. 4: Youku SPDL diagram: including three swimlanes
(namely three actors) and seven activities, two kinds of
resources and data.

process uses the video and the data of customer
identification.

• In the last process, the customer applys VIP and pays
some money to Youku.

The types, including different resources, data and actors,
in the service context E of Youku are defined at first.

V ideo :=(λidr : nat.V alueObject[idr])1431

V IP :=µd 2432

Normal :=µd 2453

Customer :=(λida : nat.Participant[ida])3104

Advertiser :=(λida : nat.Participant[ida])3105

(20)

Then the activities (Upload, Exhibit, Browse, WatchAd,
WatchVideo, ApplyVIP, PayForAd) are defined.

Upload :=µa(Customer (νcrV ideo :: nil)nil)

Exhibit :=µa(Provider (νorMoney :: νurV ideo

:: nil)nil)

Browse :=µa(Customer nil nil)

WatchAd :=µa(Customer nil (νudNormal :: nil))

WatchV ideo :=µa(Customer (νurV ideo :: nil) (νud

V IP :: nil))

ApplyV IP :=µa(Customer (νcrMoney :: nil)

(νodNormal :: νcdV IP :: nil))

PayForAd :=µa(Advertiser (νcrMoney :: nil)nil)
(21)

7

Then there are some lines.
l1 :=µl((µlpaUpload) (µlpaExhibit))

l2 :=µl((µlpgExc) (µlpaWatchAd))

l3 :=µl((µlpgExc) (µlpaWatchV ideo))

l4 :=µl((µlpaWatchAd) (µlpaPayForAd))

l5 :=µl((µlpaWatchAd) (µlpaWatchV ideo))

l6 :=µl((µlpaBrowse) (µlpgExc))

(22)

6 SERVICE PATTERN

This section introduces the formalization of service pattern
and a specific example.

6.1 Definition
The service pattern can be formalized as the combination of
the business rules about the activities, resources, data and
actors. We specify service pattern Ψ by the following BNF
rule.

Ψ := ψ|
∑

(x : X).Ψ(x)|
∏

(x : X).Ψ(x)|Ψ×Ψ|Ψ + Ψ
(23)

There are two possible methods, present in Fig. 6, to con-
struct the service pattern.

• Mining service pattern. Mining service pattern from
service processes is the reasonable and reliable mea-
sure. This method, however, relies on the accumula-
tion of service processes (especially in SPDL). Lim-
ited to this condition, we leave the study on this
method in a near future.

• Extracting service pattern. Extracting service pattern
from literatures (especially literatures from manage-
ment science and economics) is a feasible method.

We have extracted 7 basic service patterns, Asset sale,
Usage fee, Subscription fee, Leasing, Licensing fee, Bro-
kerage fee and Advertising from literature [21] and studied
30 (e.g. Alibaba Inc. 3) companies [22] in China.

• Asset sale is the classical service pattern of tradi-
tional manufacturing industry service. There are two
important steps: producing something valuable and
selling it to earn benefit.

• Usage fee is generated by the use of a service.
A telecom operator may charge customers for the
number of minutes spent on the phone.

• Subscription fee is generated by selling continues
access to a service. World of Warcraft Online, a Web-
based computer game, allows users to play its online
game in exchange for a monthly subscription fee.

• Leasing created by temporarily granting someone
the exclusive right to use a particular asset for a fixed
period in return for a fee. Zipcar.com, which allows
customers to rent cars by the hour in North American
cities, provides a good illustration.

• Licensing fee is generated by giving customers per-
mission to use protected intellectual property in ex-
change for licensing fees? Licensing is common in the
media industry, where content owners retain copy-
right while selling usage licenses to third parties.

3. http://www.alibaba.com

Fig. 5: Subscription fee SPDL diagram: including two swim-
lanes, two activities, one resource and two data

• Brokerage fee derives from intermediation services
performed on behalf of two or more parties. APP
Store (Apply Inc.) provides a platform for APPs and
makes benefit by brokerage.

• Advertising results from fees for advertising a partic-
ular product, service, or brand. In recent years soft-
ware and services have started relying more heavily
on advertising revenues.

Restricted to the length of this paper, we just discuss sub-
scription fee in following parts in detail. An Introduction
and comparison of these seven service patterns can be found
in Tab. 4. These service patterns are quite basic and the
more complex patterns (e.g. the combination of two basic
patterns) can also be supported in our model.

6.2 subscription fee
The SPDL diagram (Fig. 5) of subscription fee presents the
two actors (Provider and a participant: p), two activities
(a1 and a2), Money and two data (d1 and d2). This pattern
consists of two steps:

• Subscribe: p consumes the data d1, creates the data
d2 and pays some Money in activity a1.

• Use: p uses the data d2 in other activity a2.

These two steps can be represent by a group of business
rules, which compose the definition of this service pattern
in business rule form.

Ψr
SF JSubscriptionFeeK :∑

(a1, a2 : Activity)
∑

(d1, d2 : Data)∑
(p : Participant)ψA(a1 p)× ψA(a2 p)

× ψAD(a1 νod(d1))× ψAR(a1 νcr(Money))

× ψAD(a1 νcd(d2))× ψAD(a2 νud(d2)).

(24)

Here comes the pattern form use the pattern rule (ψAP

for example).

Ψ∗SF JSubscriptionFeeK :∑
(a1, a2 : Activity)

∑
(d1, d2 : Data)∑

(P : Participant)ψAP (µap(p nil

(νcr(Money) :: nil) (νod(d1) :: nil) (νcd(d2))) a1)

× ψAP (µap(p nil nil (νud(d2) :: nil) a2)
(25)

The two forms are equivalent and the proof is omitted
here since the length limit of this paper.

8

Fig. 6: Service Pattern Matching Framework: including a
service pattern construction phase and a service pattern
matching phase

7 SERVICE PATTERN MATCHING

A basic application about the service pattern is the service
pattern matching (SPM). The framework of our solution is
present in Fig. 6. Detailed explanation can be found in this
section.

7.1 Problem Description
Definition 7.1 (Service Pattern Matching) Considering a
service process t and a service pattern Ψ, service pattern matching
is to find out whether t ∝p Ψ.

In this definition, t ∝p Ψ is satisfied if two conditions hold
on the same map M : V (t) → V (Ψ) in which V (t) means
the activity node set of process t and E(t) is the sequence
line set:

1) Semantic Consistency Condition: Existing a map
M, for any activity node v ∈ V (t) that v andM(v)
must express the same function.

2) Ontology Consistency Condition: Existing a map
M, for any sequence line (v1, v2) ∈ E(t) that
(M(v1),M(v2)) ∈ E(Ψ).

The ontology consistency condition is also called the
directed subgraph isomorphism condition, if we treat the
process t as the two tuples (V (t), E(t)). In this way, we can
use the subgraph isomorphism approaches to partially solve
SPM. However, the semantic consistency condition is much
harder to satisfy, because this condition is not quantitative.
In the rest of this section, we propose an approach to solve
SPM by converting the activity semantic by its resource
operation list and data operation list.

7.2 Typed SPM
As the semantic consistency condition described, the simi-
larity measurement between two activities are very impor-
tant. A possible measurement is the activity pattern rule
defined by (17). The typed SPM is defined as follows:

Definition 7.2 (Typed SPM) t ∝p Ψ if existing a mapM, for
any activity A in t that A � M(A) and for any line L in t that
σl(ls) �M(σl(ls)) and σl(lt) �M(σl(lt)).

We can find that typed SPM is a specification of SPM. And
the essential of typed SPM is a composite business rule. So
the truth condition of typed SPM is as follows.

Theorem 7.1 (Typed SPM Theorem) Given a target service
process t and a service pattern Ψ, in context E and Γ, t ∝p Ψ is
true if an instance i of Ψ can be constructed.

The truth condition is sufficient for Typed SPM. The proof
is discussed in section 9.1.

7.3 Constructing as Identifying

Constructing as Identifying comes from the formulae-as-
types interpretation in Curry-Howard isomorphism. It pro-
vides a framework to construct an instance of a dependent
type (including dependent sum type and dependent prod-
uct type in Table 1) by a group of logic rules in Table 3. Based
on this style, our solution framework consists of three steps:

• Step 1: Converting the target service pattern into a
dependent type. It may in the business rule form (e.g.
(24)) or the pattern form (e.g. (25)).

• Step 2: Extracting the service elements from eco-
system E into a group of instances of business rules.

• Step 3: Trying to construct an instance of dependent
type by using logic rules on the existing instances.
If succeed, the service process matches such service
pattern. If failed, the service process doesn’t match
this service pattern.

As Fig. 6 presents, the service patterns defined in Section
6 are already in business rule form. New service pattern
can be extracted or mined from existing service processes.
Before matching, new service pattern must be converted
into business rule form.

Example: This example is identifying whether Youku matches
subscription fee pattern. Subscription fee pattern is defined in
business rule form in (24). So we just need to complete step 2
and 3. In step 2, we take the ’applyVIP’ as an example and the
extracting details is as (26).

E ` Customer : Actor (Definition (20))
E ` ApplyV IP : Activity (Activities definition (21))

ΓE ` σApplyV IP (ap) = Customer :

ψA(ApplyV IP Customer) (Intro ψA)
(26)

In the similar way, we can extract other propositions.

ΓE ` σWatchV ideo(ap) = Customer

: ψA(WatchV ideoCustomer)
(27)

E ` Normal : Data (Eco-system definition (20))
E ` ApplyV IP : Activity (Activities definition (21))

ΓE ` (σApplyV IP (aid) 3list νod(Normal))

: ψID(ApplyV IP νod(Normal)) (Intro ψID)
(28)

9

similarly, we can get following equations.

ΓE ` (σApplyV IP (aor) 3list νcr(Money))

: ψOR(ApplyV IP νcr(Money))

ΓE ` (σApplyV IP (aod) 3list νcd(V IP))

: ψOD(ApplyV IP νcd(V IP))

ΓE ` (σWatchV ideo(aid) 3list νud(V IP))

: ψID(WatchV ideo νud(V IP))

(29)

In step 3, we extract ApplyV IP , WatchV ideo, Customer
from (26), (27), (28) and (29). As illustrated in Tab. 3, the extract
rule finds out the dependent product type from the λ term. In de-
tail, since we get the type of σApplyV IP (aor) 3list νcr(Money),
σApplyV IP (aod) 3list νcd(V IP), and σWatchV ideo(aid) 3list
νud(V IP), we can extract the process as a dependent product
type.

ΓE ` (σApplyV IP (ap) = Customer)

×(σWatchV ideo(ap) = Customer)

×(σApplyV IP (aid) 3list νod(Normal))

×(σApplyV IP (aor) 3list νcr(Money))

×(σApplyV IP (aod) 3list νcd(V IP))

×(σWatchV ideo(aid) 3list νud(V IP)) : Ψr
SF

(30)

In (30), the item (σApplyV IP (ap)......νud(V IP)) is the in-
stance of Ψr

SF . Therefore we can determine that Youku matches
the service pattern Ψr

SF .

8 TOOLS

To support our theories, we have built some tools, including
an eclipse based visual process modeling software, named
SPDL-Editor which implements SPDL. We also provide a
SPDL lib for Coq and a package for Microsoft Visio.

8.1 SPDL-Editor

Fig. 7 is the snapshot of SPDL-Editor. It now supports
following functions.

• Creating, Editing and Saving the service process with
resource.

• Matching a service process automatically with exist-
ing 7 service patterns (in section 6).

More technology details can be found in the technical
report [23].

8.2 Other tools

A SPDL lib for Coq is specially mentioned here. Coq is a
proving assistant tool in the logic framework of TT. We have
developed a tool (SPDL4Coq) to convert a SPDL model into
a Coq script. With the help of SPDL lib and the Coq script,
SPM can be solved in Coq automatically.

9 DISCUSSION

In this section, we discuss the effectiveness and efficiency of
our approach in solving SPM.

Fig. 7: Snapshot of SPDL-Editor: including the editor area,
thumbnail, console and outline.

9.1 Effectiveness
Let’s consider the typed SPM theorem mentioned above.

Theorem 9.1 (Typed SPM Theorem) Given a target service
process t and a service pattern Ψ, in context E and Γ, t ∝p Ψ is
true if an instance i of Ψ can be constructed.

Proof 1 To prove typed SPM theorem, we need to prove the
existence of a map M on two consistency conditions. We use
A1(i), A2(i), ..., Ani

(i) to represent the activities in instance i
and A1(t), A2(t), ..., Ant

(t) to represent the activities in pro-
cess t. The service pattern rule ensures that for any activity
Aj(i) in instance i, there is an activity Ak(t) in process t
that Aj(i) � Ak(t). In this way, we can construct a map
M′ = {(Ak(t), Aj(i))|∀k ∈ [1, ni]}. Therefore, map M′
satisfies semantic consistency condition. If M′ satisfies ontology
consistency condition, then it is the wanted map. Considering
a random line l in the instance i, σl(ls) � M(σl(ls)) and
σl(lt) � M(σl(lt)), because of ψCAA. Therefore, M′ satisfies
ontology consistency condition.QED.

Typed SPM Theorem ensures that typed SPM, a possible
specification of SPM, can be solved by constructing an
instance of the service pattern.

Another possible specification is ignoring the semantic
consistency condition and degrading the original problem
into a subgraph isomorphism problem. pThe research on
subgraph isomorphism has a long history and the detailed
comparison is discussed in section 10.

9.2 Efficiency
The efficiency is the shortcoming of most theorem-proving
methods. Our approach has a high time complexity in
finding a possible abstraction for each activity in service
pattern. Considering a service pattern with n activities and
a service process with m activities. The number of possible
matching is as large as mn. To increase the efficiency, the
following improvements can be made.

• Appending subtypes for activities (Subtyped
SPM). Assuming that n service pattern activities
are classified as k subtypes, each subtype has ni
service pattern activities and mi process activities
in which i ∈ [1, k],

∑
i ni = n and

∑
imi = m.

10

Fig. 8: The evaluation on different patterns with different
approaches.

The number of possible matching is
∏k

i m
ni
i which

is much smaller than mn. The classification basis is
the activity behavior, which can be specified by the
data and resource exchange. For example, we can put
WatchAd and WatchVideo, two activities in Youku (Fig.
4), in the same group because they both have other
data and resource exchange except using a kind of
data. WatchAd uses the data Normal, and WatchVideo
uses the data VIP.

• Parallelizing matching (Parallel SPM). The paral-
lelizing framework (e.g. MapReduce [24]) can im-
prove the efficiency by matching many pattern ac-
tivities at the same time. In the Maping procedure,
each computing node takes responsibility of a service
pattern and in reducing procedure, the matching
results from each computing node are summarized.
Considering a k-parallelize framework, the matches
number is dm/ken which is also much smaller than
mn. For example, considering the matching of Youku
with seven known patterns, described in section 6,
we can put the matching processing, e.g. section
6.3, in seven computing nodes. In each node, our
Typed SPM can be used to identify the relation
between the service pattern and Youku. At last, in the
reducing procedure, we summarize the result from
each computing node. In this way, we can speed our
method and improve the efficiency in mass activity
environment.

9.3 Experiment

To quantitatively evaluate the efficiency of Typed SPM,
Subtyped SPM and Parallel SPM, we conduct two exper-
iments. In these experiments, when using Subtyped SPM,
we abstract 5 activities as a subtype. And when using Par-
allel SPM, we deploy the Typed SPM on four independent
threads, namely 4-parallel. We record the executing time for
each approach.

In the first experiment, we test seven service pattens
on same process with Typed SPM, Subtyped SPM and
Parallel SPM. The report is illustrated in Fig. 8, in which
4-parallel always performs best for each service pattern. In

Fig. 9: The evaluation on different activity number with
different approaches.

most situations, except Usage Fee, Leasing and Licensing
Fee, Subtyped SPM uses less time comparing with Typed
SPM. This is because both Usage Fee, Leasing and Licensing
are patterns with only one activity, as Tab. 4. It means
that Subtyped SPM is a more appropriate choice when the
pattern has more activities.

In the second experiment, we test these approaches on
processes with different activity number. As depicted in Fig.
9, the executing time of Typed SPM increases fastest com-
paring with Subtyped SPM and Parallel SPM. It concludes
the Subtyped SPM and Parallel SPM have better scalablity.

10 RELATED WORKS

For better understanding the originality and contribution
of our works, the classical business process models and
workflow patterns and subgraph isomorphism techniques
are discussed in this section. These approaches and models,
althought achieve a great success of their field, performs
poorly in analzying the data and resource exchange in
business process.

10.1 Business Process Models

As a basic and practical standard, Business Process Model
and Notations, BPMN [7], laid a solid foundation for most
researches on this domain. BPMN provides the basic con-
cepts, including activity, gateway and event, which both
play important roles in various business process models.
The limitation of BPMN, however, comes from its poor
abstraction in data and resource.

To present the data relation between different activities,
BPMN involves data dependency which helps in process
designing. Bhattacharya, et al. [25] stepped further and
formulated a model called artifact-centric BPM. Artifact-
centric BPM is also called data centric BPM [26] [27] in
previous researches. Estanol, et al. [28] used UML to rep-
resent each element in artifact-centric model. Richard, et al.
[14] provided a brief survey on artifact-centric model. The
key idea of artifact-centric BPM is encapsulating the data in
business process as an special object called artifact. In the
executing procedure, both the data creating and destroying

11

are happened in artifact. The most important improvement
is that it helps to access the state of data at any time. In our
work, we refer artifact centric BPM to present the life cycle
of the data. However, artifact cannot directly be used to
support resource aware service process designing, because
it does not distinguish the resources with attributes.

There are many research results in business process
model including: Event-driven Process Chains [6] organises
the process as the event chain. Reijgers et al. [29] discussed
the declarative model of business process and proposes a
research agenda for the development of modeling approach.
Wong et al. [30] provided the process semantics for BPMN.
Russell et al. [16] extended BPEL with the human task
considered. Rodriguez et al. [31] extended BPMN with
data quality considered. Maamar et al. [32] introduced a
framework to resolve the resource confliction happened
in process. Tzivikou et al. [33] proposed a language for
modeling business terms, which is named SeDL-C. In our
previous works, [34] summarized the works on Artifact-
Centric Models and [35] studied the characteristic of Mod-
ern Service Industry.

Comparing with these BPMs, SPDL holds a better for-
malization on data and resource which supporting the ana-
lyzing of data and resource exchange in process.

10.2 Workflow Pattern

YAWL [8], [36], proposed by Aalst, is a famous workflow
modeling language based on Petri Net. Besides, Aalst stud-
ied the workflow pattern [12] and lays a solid foundation
for the workflow pattern analysing. In literature [15], [16],
Aalst proposed the resource workflow pattern. However,
the resource is only limited to the human labor resource.
The money and other value objects are not considered in
this framework.

10.3 Subgraph Isomorphism

As we mentioned in previous section, subgraph isomor-
phism can be used to solve the SPM, if we ignore the
semantic consistency condition [37]. subgraph is also called
subgraph mining, subgraph matching or subgraph dis-
covery in some literatures. FSG(Frequent Subgraphs) [38],
AGM(Apriori-based Graph Mining) [39] and gSpan [40] are
common used subgraph isomorphism algorithms. Uncer-
tain subgraph mining [41] extends the classical subgraph
isomorphism to uncertain graph. All these algorithms can
efficiently solve the SPM with ontology consistency condi-
tion only.

11 CONCLUSION AND FUTURE WORK

Due to the poor performace of both classical BPMs, work-
flow patterns in analyzing the data and resource exchange
in Business Process, which is widely approved by the
managers in practice, we introduce a new pattern-centered
business process modeling language, named SPDL. Taking
advantages of the SPDL formalization, we study the formal-
ized definition of service pattern, in the form of business
rules. To support applying service pattern in enterprise
business process analysing, the service pattern matching

problem (SPM) is studied. And we propose a service pat-
tern matching approach in the Constructing-As-Identifying
style. Besides, we discuss the effectiveness of our approach
and propose two ways to improve the efficiency. Further-
more, a service pattern modeling and matching tool, called
SPDL-Editor, is developed. As future work, it is interesting
to consider the combination of our approach and subgraph
isomorphism. It may take the advantage of the efficiency of
subgraph isomorphism and cover the sematic consistency
condition at the same time.

ACKNOWLEDGMENTS

This work was supported by Zhejiang Provincial Natural
Science Foundation of China under grant No.LY15F02007.

REFERENCES

[1] J. Jeston and J. Nelis, Business process management. Routledge,
2014.

[2] Y. Li, B. Cao, L. Xu, J. Yin, S. Deng, Y. Yin, and Z. Wu, “An
efficient recommendation method for improving business process
modeling,” Industrial Informatics, IEEE Transactions on, vol. 10,
no. 1, pp. 502–513, 2014.

[3] M. Le, B. Gabrys, and D. Nauck, “A hybrid model for business
process event and outcome prediction,” Expert Systems, 2014.

[4] W. M. Van Der Aalst, A. H. Ter Hofstede, and M. Weske, “Business
process management: A survey,” in Business process management,
ser. Business process management. Springer, 2003, pp. 1–12.

[5] C. Barreto, V. Bullard, T. Erl, J. Evdemon, D. Jordan, K. Kand,
D. Konig, S. Moser, R. Stout, and R. Ten-Hove, “Web services
business process execution language version 2.0 primer,” OASIS
Web Services Business Process Execution Language (WSBPEL) TC,
OASIS Open, 2007, bPEL.

[6] A.-W. Scheer, O. Thomas, and O. Adam, “Process modeling using
event-driven process chains,” Process-Aware Information Systems,
pp. 119–146, 2005.

[7] S. A. White, “Introduction to bpmn,” IBM Cooperation, vol. 2, no. 0,
p. 0, 2004.

[8] W. Van Der Aalst and K. M. Van Hee, Workflow management: models,
methods, and systems. MIT press, 2004.

[9] Z. H. Wu, X. B. Wu, and M. M. Yao, Business model innovation of
modern service company a value network perspective, 1st ed. Beijing:
Science Press, 2013.

[10] D. Zelin, H. Shuhua, and Z. Wenjing, “Evaluation index system of
modern service industry and its empirical analysis [j],” Technology
Economics, vol. 10, p. 009, 2012.

[11] Z. Wu, “Modern service industry in china: Crossover, conver-
gence, and complex services,” Zhejiang University, Tech. Rep.,
2014.

[12] W. M. Van Der Aalst, A. H. Ter Hofstede, B. Kiepuszewski, and
A. P. Barros, “Workflow patterns,” Distributed and parallel databases,
vol. 14, no. 1, pp. 5–51, 2003.

[13] S. A. White, “Process modeling notations and workflow patterns,”
Workflow Handbook, vol. 2004, pp. 265–294, 2004, bPMN.

[14] R. Hull, “Artifact-centric business process models: Brief survey
of research results and challenges,” in On the Move to Meaningful
Internet Systems: OTM 2008, ser. On the Move to Meaningful
Internet Systems: OTM 2008. Springer, 2008, pp. 1152–1163.

[15] N. Russell, W. M. van der Aalst, A. H. Ter Hofstede, and D. Ed-
mond, “Workflow resource patterns: Identification, representation
and tool support,” in Advanced Information Systems Engineering, ser.
Advanced Information Systems Engineering. Springer, 2005, pp.
216–232.

[16] N. Russell and W. M. van der Aalst, “Evaluation of the
bpel4people and ws-humantask extensions to ws-bpel 2.0 using
the workflow resource patterns,” Bpm center report, Department
of Technology Management, Eindhoven University of Technology GPO
Box, vol. 513, 2007.

[17] P. Martin-Lof, “An intuitionistic theory of types,” Twenty-five years
of constructive type theory, vol. 36, pp. 127–172, 1998.

12

Name SPDL diagram Formalization

Asset Sale

Ψr
ASJAssetSaleK :∑
(a1, a2 : Activity)

∑
(v : Resource)∑

(p : Participant)

ψA(a1 Provider)× ψA(a2 p)

×ψAR(a2 νor(v))× ψAR(a1 νcr(Money))

×ψAR(a1 νor(Money))× ψAR(a1 νcr(v))

Usage Fee

Ψr
UF JUsageFeeK :∑
(a : Activity)

∑
(v : Resource)∑

(p : Participant)ψA(a p)

×ψAR(a νur(v))× ψAR(a νcr(Money))

Subscription Fee

Ψr
SF JSubscriptionFeeK :∑
(a1, a2 : Activity)

∑
(d1, d2 : Data)∑

(p : Participant)

ψA(a1 Provider)× ψA(a2 Provider)

×ψAD(a1 νod(d1))× ψAD(a1 νcd(d2))

×ψAR(a1 νcr(Money))× ψAD(a2 νud(d2))

Leasing

Ψr
LJLeasingK :∑
(a : Activity)

∑
(v : Resource)∑

(p : Participant)

ψA(a p)× ψAR(a νer(v))

×ψAR(a νcr(Money))

Licensing Fee

Ψr
LF JLicensingFeeK :∑
(a : Activity)

∑
(p : Participant)

ψA(a p)× ψAR(a νur(Brand))

×ψAR(a νcr(Money))

Brokerage Sale

Ψr
BF JBrokerageFeeK :∑
(a1, a2 : Activity)

∑
(v1, v2 : Resource)∑

(p1, p2 : Participant)

ψA(a1 p1)× ψA(a2 p2)

×ψAR(a2 νor(v2))× ψAR(a2 νcr(Money))

×ψAR(a1 νur(v1))× ψAR(a1 νcr(v2))

Advertising

Ψr
UF JAdvertisingK :∑
(a1, a2 : Activity)

∑
(p : Participant)∑

(i : Line)

ψA(a1 p)× ψA(a2, Advertiser)

×ψCAA(l a1 a2)× ψAR(a2 νcr(Money))

TABLE 4: The SPDL diagrams and formalizations of seven service patterns

13

[18] ——, “Constructive mathematics and computer programming,” in
Proc. of a discussion meeting of the Royal Society of London on Math-
ematical logic and programming languages, ser. Proc. of a discussion
meeting of the Royal Society of London on Mathematical logic and
programming languages. Prentice-Hall, Inc., 1985, pp. 167–184.

[19] B. Barras, S. Boutin, C. Cornes, J. Courant, J.-C. Filliatre,
E. Gimenez, H. Herbelin, G. Huet, C. Munoz, C. Murthy et al.,
“The coq proof assistant reference manual: Version 6.1,” 1997.

[20] D. J. Howe, “Constructive type theory,” Logic, Algebra, and Compu-
tation: International Summer School, vol. 79, p. 265, 2012.

[21] A. Osterwalder, Y. Pigneur, M. A.-Y. Oliveira, and J. J. P. Ferreira,
“Business model generation: A handbook for visionaries, game
changers and challengers,” African Journal of Business Management,
vol. 5, no. 7, 2011.

[22] Y. Huang and X. Wu, Cases of Business Model Innovation in Service
Sector. Zhejiang University Press, 2010.

[23] L. Zhiling, “Spdl technological manual,” 2013.
[24] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing

on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[25] K. Bhattacharya, C. Gerede, R. Hull, R. Liu, and J. Su, “Towards
formal analysis of artifact-centric business process models,” pp.
288 – 304, 2007 2007.

[26] A. Deutsch, R. Hull, F. Patrizi, and V. Vianu, “Automatic verifica-
tion of data-centric business processes,” in Proceedings of the 12th
International Conference on Database Theory, ser. Proceedings of the
12th International Conference on Database Theory. ACM, 2009,
pp. 252–267.

[27] K. Bhattacharya, R. Hull, and J. Su, “A data-centric design method-
ology for business processes,” Handbook of Research on Business
Process Modeling, pp. 503–531, 2009.

[28] D. Calvanese, M. Montali, M. Estanol, and E. Teniente, “Verifiable
uml artifact-centric business process models (extended version),”
pp. 292–303, 2014.

[29] H. A. Reijers, T. Slaats, and C. Stahl, “Declarative modeling–
an academic dream or the future for bpm?” in Business Process
Management, ser. Business Process Management. Springer, 2013,
pp. 307–322.

[30] P. Y. Wong and J. Gibbons, “A process semantics for bpmn.”
Springer, 2008, pp. 355–374.

[31] A. Rodrı́guez, A. Caro, C. Cappiello, and I. Caballero, “A bpmn
extension for including data quality requirements in business
process modeling,” in Business Process Model and Notation, ser.
Business Process Model and Notation. Springer, 2012, pp. 116–
125.

[32] Z. Maamar, N. Faci, S. K. Mostefaoui, and E. Kajan, “Network-
based conflict resolution in business processes,” in e-Business
Engineering (ICEBE), 2013 IEEE 10th International Conference on,
ser. e-Business Engineering (ICEBE), 2013 IEEE 10th International
Conference on. IEEE, 2013, pp. 132–137.

[33] C. Tziviskou, M. Palmonari, M. Comerio, and F. De Paoli, “Sedl-c:
A language for modeling business terms in service descriptions,”
pp. 547–554, 2013 June 28 2013-July 3 2013 2013.

[34] B. Fan, Y. Li, S. Liu, and Y. Zhang, “Run jta in jtang: Modeling
in artifact-centric model and running in activity-centric environ-
ment,” in Asia Pacific Business Process Management, ser. Asia Pacific
Business Process Management. Springer, 2015, pp. 83–97.

[35] Y. Li, Z. Luo, J. Yin, L. Xu, Y. Yin, and Z. Wu, “Enterprise pattern:
integrating the business process into a unified enterprise model
of modern service company,” Enterprise Information Systems, no.
ahead-of-print, pp. 1–21, 2015.

[36] W. M. P. van der Aalst, “Yawl: yet another workflow language,”
Information Systems, vol. 30, no. 4, pp. 245 – 275, 2005.

[37] R. Dijkman, M. Dumas, and L. Garcı́a-Bañuelos, “Graph match-
ing algorithms for business process model similarity search,” in
Business Process Management, ser. Business Process Management.
Springer, 2009, pp. 48–63.

[38] M. Kuramochi and G. Karypis, “Frequent subgraph discovery,”
pp. 313–320, 2001 2001.

[39] A. Inokuchi, T. Washio, and H. Motoda, “An apriori-based al-
gorithm for mining frequent substructures from graph data,” in
Principles of Data Mining and Knowledge Discovery, ser. Principles
of Data Mining and Knowledge Discovery. Springer, 2000, pp.
13–23.

[40] X. Yan and J. Han, “gspan: Graph-based substructure pattern
mining,” in Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE
International Conference on, ser. Data Mining, 2002. ICDM 2003.

Proceedings. 2002 IEEE International Conference on. IEEE, 2002,
pp. 721–724.

[41] A. Moustafa and M. Zhang, “Learning efficient compositions for
qos-aware service provisioning,” in ICWS, ser. ICWS. IEEE, 2014,
pp. 185–192.

Jianwei Yin is currently a professor in the Col-
lege of Computer Science, Zhejiang University,
China. He received his Ph.D. in Computer Sci-
ence from Zhejiang University in 2001. He is the
visiting scholar of Georgia Institute of Technol-
ogy, US, in 2008. His research interests include
distributed network middleware, software archi-
tecture and information integration.

Zhiling Luo is the Ph.D. candidate in College of
Computer Science, Zhejiang University, China.
He received his B.S. in Computer Science from
Zhejiang University in 2012. His research inter-
ests include service computing and data mining.

Ying Li received the B.S., M.S. and Ph.D. de-
grees in computer science from Zhejiang Uni-
versity, China,in 1994, 1997 and 2000, respec-
tively. He is currently an associate professor with
the College of Computer Science, Zhejiang Uni-
versity. He is currently leading some research
projects supported by National Natural Science
Foundation of China and National High-tech RD
Program of China (863 Program). His research
interests include service computing, business
process management and compiler.

Zhaohui Wu received the B.S. and Ph.D. de-
grees in computer science from Zhejiang Uni-
versity, Hangzhou, China, in 1988 and 1993,
respectively. He is currently a Professor with the
College of Computer Science, Zhejiang Univer-
sity. His research interests include distributed
artificial intelligence, semantic grid, and perva-
sive computing. Dr. Wu is a Standing Council
Member of the China Computer Federation.

