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Abstract—Job cutting occurs when a modern service enter-
prise reduces the employing labour cost by firing some staffs.
Making an appropriate layoff plan is always quite difficult
since a bad job cutting has a serious impact on not only the
organization but also the business process executing efficiency.
Therefore, in this paper, we address the problem of making an
optimal layoff plan with the least influence on the executing of
the business process. The key challenge is estimating the process
throughput under a layoff plan. We overcome this challenge
by two steps: regressing the activity throughput by the stuff
number and inferring process throughput by the maximum
flow or minimum cut algorithm on the Directed Acyclic Graph
of process. In the regressing step, a kernel autoregressive hybrid
model is proposed, whose MSE is 30% lower than SVM. After
that, an augmenting path based algorithm is introduced to
make an optimal layoff plan. To evaluate the accuracy of our
model, we conduct an external experiment on a real dataset
from the workflow system employed in the government of
Hangzhou City in China, which results in 9750969 logs from
2050 activities and 16295 employees in two years.

Keywords-Machine Learning; Layoff; Autoregressive Model;
Kernel Method

I. INTRODUCTION

Layoff, a common phenomena occurred in both modern
service enterprises and government departments to reduce
the labour resource cost, is accompanied by giant changes
and some potential influences on this organization [15].
Since both the importance and influence on the business
process vary from one staff to another, making decisions
about who should be fired is really tough, from the perspec-
tive of the manager. An awful layoff plan will decrease the
efficiency of the organization and even shut the business
down. Therefore how to build an optimal layoff plan is
becoming an interesting topic for both the managers and
researchers.

To specify our discussion, we illustrate a layoff plan by
following three questions:
• Q1: Which positions are redundant in staffs?
• Q2: How many staffs need to be laid off on each

position?
• Q3: Who should be fired?
Q1 can be answered qualitatively by theories of man-

agement science. Specifically, human resource management,

Figure 1: Real Estate Transactions Approval Process in
BPMN diagram of Hangzhou Government, China. This
diagram is in the format of BPMN, in which activity is
presented by the rectangle and gateway is presented by the
prism. The circular is start node and the bound circular is the
end node. There are 13 activities and 6 gateways in RetAP.

a major branch in the management science, derives some
basic principles and useful tools [13] on layoff. These
theories, built on the experience of managers, are either
qualitative or grain-coarse [4], [12] and out-perform poorly
in quantitatively analysing.

To answer Q2, we need step further and construct a
concreted and quantitative theory. In this work, we intro-
duce Workflow Management System(WfMS) as the theory
foundation. Devised decades ago, Workflow Management
System [19] has experienced a rapid development and now
is widely used in enterprises and government departments to
support the business process management. WfMS provides
not only a process management tool but also more possi-
bilities with quantitative resource management techniques
[17]. Specially, WfMS records all the staff operations in
its event log supporting deep analysis on the process [19].
Therefore, we employ WfMS and its log helping to find out
the potential redundant position.

As for Q3, the personal effectiveness and other non-job
factors are involved. It is beyond the scale of this paper and
we leave this part in near future work. In this work, we
ignore the different performance between different staffs.



Therefore, in this paper, we study the layoff problem on
the foundation of WfMS and introduce a model based on the
event logs. To evaluate the influence of layoff, we employ
the throughput or frame rate [9], namely the completed
instances number of an activity per unit time. Further, the
process throughput, the achieved process instances per unit
time, can be defined and calculated by the activity through-
put. To guarantee the regular running, the different between
the process throughput before and after layoff should be
as small as possible. The formalization of this problem
is an optimization problem, as we explained in section
III-B. Its complexity comes from two challenges. For better
understanding the challenges, we have extracted a Real
Estate Transactions Approval Process (RetAP), illustrated by
Fig. 1, charged by the Real Estate Department of Hangzhou
Government, China.

• Given the staff number, estimating the activity
throughput is difficult. There are three important facts.
First, although intuitively the activity throughput and
staff number have the positive correlation, it is not
a linear relation.Second, we witness that the activity
throughput in different day sharing the same staff
number. The last but not least, the activity throughput
is time sequence related. In other words, the activity
throughput of day t is not related to the staff number,
but also influenced by the activity throughput at t− 1,
t− 2 and so on.

• Given the activity throughput, inferring the pro-
cess throughput is another challenge. This chal-
lenge comes from two facts. On one hand, although
activity throughput is studied in previous literature,
the definition and calculation of process throughput
is rarely discussed before. Therefore, introducing a
reasonable definition itself is not an easy task. On the
other hand, process structure has a important influence
on its throughput. In other words, in estimating the
process throughput, we should take not only the activity
throughput but also the process structure into consider-
ation.

To overcome the first challenge, referring the AutoRegress
Model (AR) or (ARM) [1], we introduce an autoregressive
model to present the activity throughput and append the
staff number by a non linear kernel. In this way, we build a
autoregressive and kernel hybrid model to estimate activity
throughput. To overcome the second challenge, we convert
the process structure to a Directed Acyclic Graph and
employ a promoted maximum flow/ minimum cut algorithm
to infer the process throughput.

Contribution: Our major contributions in this paper are
summarized as follows.

• A kernel autoregressive hybrid model to predict the
activity throughput given the staff number. Comparing
to other process mining techniques related to the labour

resource, our model supports presenting the relation of
self regression.

• A metric indicator, process throughput, to evaluate the
executing efficiency. Its calculation can be inferred by
applying maximum flow or minimum cut algorithm on
Directed Acyclic Graph (DAG) of this process.

• An augmenting path based algorithm helps to select
the optimal layoff plan. This algorithm’s worst time
complexity is O(V 2E2), which is acceptable for most
practical environment.

The rest of this paper is organized as follows: Section
2 describes the source of our dataset and its basic static
characteristics. Section 3 introduces our model. Section 4
discusses the evaluation on our approaches. Finally, related
works and conclusion are respectively given in section 5 and
6.

II. WORKING LOG DATA AND CHARACTERISTICS

The dataset used in this paper, contains more than 7
million (7,650,969) event logs, and is extracted from the
WfMS of Hangzhou Government, China, which spans from
May. 2013 to Apr. 2015. It consists of 666 processes,
1,129,509 process instances, 12,836 activities, 7,650,969
activities instances and 3995 staffs. Figure 1 is an example
process in our dataset and it contains 13 activities. A process
instance is a concreted case of a process and an activity
instance is a case of an activity [21]. A data fragment is
presented in Fig. 2. An event log, recording the life cycle
of an activity instance, contains following attributes:

• InstActivityId: the identity number of this activity in-
stance,

• DefActivityId: the identity number of the activity,
• InstProcessId: the identity number of the process in-

stance that it belongs to,
• DefProcessId: the identity number of the process that

it belongs to,
• StaffId: the identity number of the staff who take

responsibility of this activity,
• Signin: the timestamp that this activity instance created

and
• Complete: the timestamp that this activity instance

completed.

III. MODEL

We first introduce the key features in layoff in Section
III-A, and then formalize the layoff problem in Section
III-B. After that, the kernel autoregressive hybrid model is
introduced in Section III-C. The inference algorithm and
the predicting method are presented in Section III-D and
Section III-E. Finally, we present the optimization approach
in Section III-F. All the notations used in this paper are
listed in Table I.



Figure 2: The dataset fragment consists of 4 activity instances from 2 activities in RetAP.

Symbol Description
A,S activity throughput, staff number
P process
N activity number
C layoff constraints
t,∆t, T time, time difference, max time
A

(t)
i throughput of activity i at time t

S
(t)
i staff number of activity i at time t
A the throughput schema
S the staff schema
P the process throughput
vij the transition probability from activity j to

activity i
i← j activity i starts after j
.̂ the value after arrangement
.∗ the predicted value

Table I: Symbols used in Section III.

A. Features

This part introduces three basic features: activity through-
put, staff number and process throughput. A process P ,
e.g. RetAP in Section 1, is a set of activities arranged
in a determined order, according the concept definitions
in workflow system. In following discussion, we use the
indicator i ∈ [1, N ] to denote an activity in the process P .
And N is the number of activities. For RetAP, N is equal
to 13 as illustrated by Fig. 1.

Definition III.1 activity throughput A(t)
i is the instance

number of activity i completed per unit time ∆t at time
t [9].

Activity throughput A(t)
i is extracted from the logs de-

scribed in above section. To simplify the calculation, we
set unit time ∆t equals one day. And the coarse of time is
chosen as a day, namely t ∈ [1, T ] is t’st day. For example,
t = 2 means the second day in all logs.

Definition III.2 the staff number S(t)
i means the staff num-

ber at time t of the activity i.

To simplify our description, we introduce the schema S =
(s1, s2, ..., sN )′ to represent the staff allocation for a process.
It means allocation si staffs for activity i. And we use A =
(a1, a2, ..., aN )′ to represent the activity throughput, where

Figure 3: The DAG diagram of RetAP contains 15 nodes (13
normal nodes, 1 start node and 1 end node) and 21 directed
edges.

activity i has ai throughput.

Definition III.3 The process throughput P(t) is the process
instance number completed per unit time ∆t at time t.

According to the buckets effect, namely the bucket’s ca-
pacity is limited by the shortest board, the process through-
put is exactly determined by least throughput activity. From
the perspective of network, the process throughput is the
maximum flow in the network composed by activities. At
first, we employ the Directed Acyclic Graph (DAG) intro-
duced by Yu and Rajkumar [24] to describe the executing
order of the process. Each node represents an activity and
a directed arc between two nodes means the one activity
cannot be executed until another activity is completed. In
some researches, DAG in process is also called Activity
On Vertex (AOV) network [18]. Figure 3 is the DAG
diagram of the example process mentioned in Section 1. The
directed arc from ’Acceptance’ to ’Pre Scan’ means the latter
is executed followed the former. We use the dependency
relation i ← j to denote the directed arc from activity j to
i. With this definition, j is called the predecessor activity
of i. Witnessing the difference of the conditional probability,
existing the dependency relation i← j between given i and
given j, we introduce v where

vij = Pr(i← j|j). (1)

The physical meaning of v is the probability of an in-



Figure 4: Inferring process throughput procedure. (a) is an
original BPMN process diagram with 3 activities and 1
gateway. (b) is the activity throughput. (c) is the DAG with
activity throughput marked. (d) is the transition probability
v. (e) is the DAG with edge weight marked. The minimum
cut is presented by the dash line in (e).

stance of activity i comes from activity j given the instances
of j. To simplify our model, we use the statical variable
to represent v, namely vij is determined by dividing the
number of instances of i which come from j by the number
of all j instances. An interesting fact is that once we employ
the topological sort on activities, v is upper triangular
matrixes, which is guaranteed by DAG.

Then, we introduce the weight E(i, j) on edges <
Ai, Aj > in DAG by

E(i, j) = Ai ∗ vij . (2)

In DAG the weights of edges from start vertex are infinite.
At last, we get the calculation of process throughput:

Proposition III.1 The process throughput is exactly the
maximum flow or minimum cut, of corresponding DAG
from start vertex to end vertex.

For better understanding this procedure, we introduce
a simple case in Fig. 4. The DAG, illustrated by (c), is
extracted from the original BPMN diagram in (a). Then the
activity throughput is appended on each node in (c). With
the help of transition probability v in (d), we can mark the
edge with by Eq. 2 in (e). Intuitively the minimum cut is
the arc marked in (e). So we get the process throughput as
17.

B. Problem Description

Thanks to the feature definitions and notations, we can
now introduce the problem description in formalization.

Definition III.4 Given a process P , the original staff
schema S and constraint C, the goal of the layoff arrange-
ment is to find a new staff schema Ŝ satisfy that ‖S−Ŝ‖ = C
to minimize the process throughput difference ‖P − P̂‖.

In this formalized definition, ‖.‖ is the `1 norm. Our goal
is to find out the optimal staff schema with least process
throughput reduction and at the same time satisfying layoff
constraint.

C. Kernel Autoregressive Hybrid Model

Noticing that both A(t) and S(t) are not stationary random
process, we apply one order difference on A(t) and S(t),
namely first gradient. Figure 5 illustrates both the original
activity throughput of ’Acceptance’ and the first gradient.
In fact we can repeat this trick r times, and get the r-
st gradient. However the promotion of using high-order
difference is inapparent in our dataset, therefore we set
r = 1. Let’s consider our observation on an activity denoted
by {st, at}Tt=1, here st is the first gradient, equaling to
S
(t)
i −S

(t−1)
i and at is equal to A(t)

i −A
(t−1)
i , we consider

the autoregressive model,

Φp(B)at = et + ω′φ(st), t = 1, 2, ..., T, (3)

where Φp(B) is a polynomial in back shift operator B with
parameters ρi, i = 1, ..., p, such that

Φp(B)at = at − ρ1at−1 − ρ2at−2 − ...− ρpat−p, (4)

and ei, called white noise, is assumed to follow indepen-
dently normal distribution, namely ei ∼ N (0, σ). φ(s) is the
kernel, often K(si, sj) = φ(si)

′φ(sj). In layoff problem, we
select RBF (Radial Basis Function) kernel,

K(si, sj) = exp(−||si − sj ||
2
2

2λ2
). (5)

Therefore, we name our model as RBF-AR(p).

D. Parameter Estimation

The estimate of parameter ω in Eq. 3, is obtained by
minimizing the regularized negative log likelihood,

L(ω) =

p∑
t=1

(Φt(B)at − ω′φ(st))
2

+

T∑
t=p+1

(Φp(B)at − ω′φ(st))
2 + λ||ω||2

(6)

where λ is a nonnegative constant which controls the trade-
off between the goodness-of-fit on the data and ||ω||2. Lit-
erature [11] guarantees that the minimizer of the regularized
negative log likelihood to be φ(s)ω = Kα for some vector
α. Therefore Eq. 6 becomes obtaining α to minimize

L(α) = (Bρa−Kα)′(Bρa−Kα) + λα′Kα (7)



Figure 5: (a) is the ’Acceptance’ activity throughput on time and (b) is its first gradient. Noticing that latter process is more
stable than the former, we use the first gradient in follow discussion instead of original data.

where

Bρ =


1 0 0 ... ... 0
−ρ1 1 0 ... ... 0

0 −ρ1 1 0 ... 0
...

0 0 ... 0 −ρ1 1

 for RBF-AR(1),

(8)

Bρ =


1 0 0 ... ... 0
−ρ1 1 0 ... ... 0
−ρ2 −ρ1 1 0 ... 0

...
0 0 ... −ρ2 −ρ1 1

 for RBF-AR(2).

(9)
and Kij = K(si, sj). The estimation value of α for the
mean function can be found as

α∗ = (KK + λK)−1KBρa, (10)

where a = (a1, a2, ...aT )′.

E. Prediction

Given st and at−1, at−2, ...at−p, the predicted value of at
is obtained as

a∗t = ρ1at−1 + ρ2at−2 + ...ρpat−p +K(st, s)α
∗, (11)

where s is the vector of si in parameter estimation. Noticing
that a∗t is the first gradient, we need add it back to the
previous activity throughput

A
(t)∗
i = A

(t−1)
i + a∗t . (12)

In predicting the process throughput, we can use various
maximum flow algorithms, e.g. Ford-Fulkerson algorithm.
And we employ Edmonds-Karp algorithm [7] to calculate
the maximum flow on DAG and its time complexity is
O(V E2), where V is the number of vertex, namely activities
and E is the edge number. In essential, after trained, our
model provides a function from staff schema S to the process
throughput P . Therefore, we can use P(S) to denote this
function.

F. Optimization

To solve problem III.4, we convert it as an optimization
problem.

minimizeŜP(S)−P(Ŝ)

s.t.‖S − Ŝ‖ = C
(13)

To solve problem 13, we propose an approximation algo-
rithm which follows steps and is illustrated by algorithm
1:
• Step 1: Selecting an activity i from the inverse topolog-

ical order, whose staff number is larger than 1. If no
activity satisfy this condition, stoping this algorithm,
which means unsatisfied. If existing two or more,
picking one randomly. Decreasing its staff number by
one, namely Si = Si − 1. Updating the constraints
C = C − 1. Updating its throughput as A∗i by RBF-
AR(p) and its connecting edge weights.

• Step 2: Using breadth-first search to finding the aug-
menting path from start node to end node. Decreasing
each edge weights on the augmenting path by the least
weight of edges in this path.

• Step 3: Repeating step 2 until no augmenting path can
be found. Finding out those activities whose connecting
out edge weight is larger than 0.

• Step 4: Initialize counter B as 1 and store a copy
of current staff number S as Sbak. Iterating those
activities in topological order and executing step 5.

• Step 5: Decreasing the selected activity’s staff number
by 1. Updating its activity throughput by RBF-AR(p).
If in this condition, the edge weight is less or equal
than 0, switching to another activities found in step 4.
Growing the counter B by 1. If B is now equal to C,
then outputs the current staff number as Ŝ

• Step 6: Restoring the staff number S from Sbak and
repeating step 1.

Figure 6 illustrates a simple example of applying algo-
rithm 1. In this case, the process consists of three activities
(a,b,c). Original staff allocation schema is S = (5, 6, 5)′, the
transition probability v and constraint C = 3. The process



Algorithm 1 Layoff Arrangement Algorithm
Input: S : Current staff schema. C: Constraints
Output: Ŝ: Arranged staff schema

1: while i = findPossibleLastActivity(S) is not null do
2: Si = Si − 1;
3: C = C − 1;
4: DAG = constructDAG(S);
5: while p = findAugmentingPath(DAG) is not null do
6: cap = findMinWeight(p);
7: DAG = updateWeightDAG(DAG, p, cap);
8: end while
9: B = 0;
10: Sbak = S;
11: while j = findExistingActivity(DAG) is not null do
12: for k = 0 to Sj do
13: if PredictA(Sj) − PredictA(Sj − k) <

getWeight(DAG, j) then
14: B = B + k − 1;
15: Sj = Sj − k;
16: if B > C then
17: Ŝ = S
18: return Ŝ
19: end if
20: end if
21: end for
22: end while
23: S = Sbak;
24: end while
25: return Unsatisfied

throughput, as we discussed, is the minimum cut, which
is equal to 17. In step 1, we sort activities in topological
order, namely (a,b,c). We select the last activity with staff
number larger than 1, which is c in this case. Then we
set staff number in c to 4, constraint C=2 and update the
DAG including activity throughput. In step 2&3, we infer
the residue graph and witness that activity b and c are both
redundant. In step 4,5&6, we try to reduce the staff number
in b and c with guaranteing the edge weights in residue
graph are both larger or equal than 0. We get the new staff
allocation schema Ŝ = (5, 5, 3)′ and the process throughput
is still 17. Finally, Ŝ is optimal layoff plan.

In Alg. 1, the iterations on line 1 are V in the worst
situation. We compute activity throughput V times, by
applying Eq. 12 at each activity, on line 4, wasting O(V ).
The time complexity from line 5 to line 7 is O(V E2)
according to Edmonds-Karp algorithm The iterations from
line 11 to line 22 are O(V ). Thus, the whole time complexity
is O(V 2E2) for alg. 1.

IV. EXPERIMENT

In this section, we report the evaluation of RBF-AR(p)
on the accuracy. Our goal here is to predict the activity
throughput based on historic records and staff number. We
set 70% activity throughput as the train data and left 30% as
test data. And we run our experiment on a 3.3GHz Intel Core
i5 processor and 8G RAM under Windows 8. All algorithms
are implemented in R language.

A. Baseline Methods

We compare our model, RBF-AR(p) with two methods.

• SVM: Supported Vector Machine uses the staff number
as the attribute to train a regression model and apply
it to predict the activity throughput in the test data.
We also select the RBF as the kernel in SVM in this
experiment.

• AR: Autoregressive Model uses the previous activity
throughput to train the autoregressive parameters and
apply them to predict the next activity throughput in
the test data.

The parameter p donates the order of autoregressive co-
efficient. It is influenced by the data characteristics and
there are plenty of researches on selecting the optimal p
in autoregressive model [2]. We omit the discussion on p
because it is beyond the scale of this paper and simply set
p = 2 for both AR and RBF-AR in activity throughput
prediction.

B. Prediction Performance

We quantitatively evaluate the performance of inferring
activity throughput in terms of Mean Square Error (MSE):

MSE =
1

N

N∑
t=1

(A(t) −A(t)∗)2, (14)

where N is the size of test data. Figure 7 shows the results
for activity throughput prediction. From Fig. 7, we see that
our method clearly outperforms the baseline methods on
both cases. RBF-AR(2) achieves a 26% reduction compared
with SVM and AR(2) in terms of MSE. Figure 8 intuitively
illustrates the comparison of SVM, AR(2) and RBF-AR(2)
in terms of MSE. As depicted by Fig. 9, we make a com-
parison between the actual value and RBF-AR(2) predicted
value of activity throughput in ’Acceptance’ in RetAP. In
Fig. 9, the light line is the actual value and the dark line is
the predicted value. It is clear that our model can guarantee
a high accuracy in activity throughput estimation.

V. RELATED WORKS

In this section, we make a simple review of researches on
layoff from two perspectives of (a) resource in WfMS and
(b) efficiency of WfMS.

As we discussed, from the perspective of human resource
management, staff is a kind of resource in WfMS [4]. In
WfMS, resource management attracts computer researchers’
attention decades ago. Russell et. al. [17] introduced a
group of resource pattern stand on Aalst’s researches about
workflow patterns [20]. Li et. al. [14] provides a workflow
model and specification with resource constraint considered.
Liu et. al. [23] took the problem of work item sharing in
resource management by applying association rule mining
techniques to workflow event log. A resource and control
flow integrated model, called SPDL, was introduced in [22]
Gao et. al. [8] proposed a resource allocation approach based
on polychromatic sets theory. A method to define resource



Figure 6: The simple case of algorithm 1

Figure 7: Activity throughput prediction performance of
different methods.

Figure 8: MSE comparison of different methods

assignment is introduced in [3]. These models, however,
both concentrate on specification and designing of resource
instead of concreted allocation approach. Our model, on
the contrary, can provide a practical and executable staff
allocation plan.

Efficiency of WfMS is another interesting and challenging
topic. Usually, researchers employ process time to identify

Figure 9: Actual value and Predicted value of activity
throughput in ’Acceptance’ in RetAP

the efficiency. Eder et. al. [6] discussed the time manage-
ment, especially time constraints management in workflow
system. Pang et. al. [16] made applications of time workflow
model using Timing Constraint Petri Nets. An activity
running duration predicting approach was proposed in [5].
Jin et. al. [10] introduced a technique appending server
in workflow system to guarantee time constraints. In these
researches, time and workflow efficiency are considered as
the optimal goal. We, on the contrary, set the efficiency,
namely process throughput as the constraint condition to
reduce staff number.

VI. CONCLUSIONS

In this paper, we study and formalize the problem of layoff
in enterprise and government department. Activity through-



put and process throughput are introduced as the constraint
condition. The goal is to find out the optimal layoff plan
to lay off staffs on some positions. At first, we propose a
kernel autoregressive hybrid model, called RBF-AR(p), in
predicting activity throughput by given staff number using
historical records. Then, we introduce an algorithm based on
DAG to allocate the staff in different activity to guarantee
the least process throughput loss. At last, the accuracy of
our model is evaluated by comparing with SVM and AR
on the real data set of Hangzhou government, China. In
summary, our model can provide an optimal layoff plan with
least throughput loss, given the historical data. Since we
can answer Q1 and Q2, mentioned above, to answer Q3, the
future work will focus on determining the personal efficiency
and firing those with least efficient.
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