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Abstract—As more business workflow systems being deployed in modern enterprises and organizations, more employee-activity log
data are being collected and analyzed. In this paper we develop a latent ability model (LAM) as a generative probabilistic learning
framework for workforce analytics over employee-activity logs. The LAM development is novel in three aspects. First, we introduce the
concept of latent ability variables to model hidden relations between employees and activities in terms of job performance, such as the
set of skills provided by an employee and the set of skills required by an activity, and how well they matchup in employee-activity
assignment. Second, we construct the latent ability model (LAM) by learning latent ability parameters from the employee-activity log
data using expectation-maximization and gradient descent. Finally, we leverage LAM to build inference and prediction models for
employee performance prediction, employee ability comparison, and employee-activity matchup quality estimation. We evaluate the
accuracy and efficiency of our approach using real log datasets collected from a workflow system deployed in the government of city
Hangzhou in China, which consists of 5,287,621 log records over two years involving 744 activities and 1725 employees. We show that
LAM approach outperforms existing representative methods in both accuracy and efficiency.
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1 INTRODUCTION

Workforce analytics is a data-driven statistical learning
methodology that employs statistical models and machine learn-
ing algorithms to worker-related data logs, enabling enterprise
organizations to optimize their talent pools and transform human
resource management [1], [2], [3]. Just like servers in large scale
computer systems, employees are the basic operating units in
modern enterprises and organizations [4], [5], [6], [7], [8], [9]. The
performance of a computer system is measured universally based
on the types of workloads using a set of well-known performance
metrics, such as throughput and latency. However, unlike computer
systems, predicting the performance of employees based on the ac-
tivities and tasks they have performed is known to be difficult [10]
and yet it is on the top of the wish-list for many enterprise leaders.
Example problems include: can we predict how many tasks that
one employee can do in the next month? Can we forecast whether
a group of three employees is sufficient for a time-sensitive task?
Such employees’ performance prediction problems are signifi-
cantly more challenging for a number of reasons. First, comparing
with computer servers, human behavior exhibits a much broader
spectrum of uncertainty because human performance is influenced
by a wide range of factors, many of which are implicit and
hidden variables [11], [12], [13], [14]. Second, the human behavior
related to employee’s performance and satisfaction is dominated
by work-related abilities of individuals, and how well employees’
provided abilities and task-required abilities are matched in the
current employee-activity assignments. Thus, simple statistical
metrics, such as throughput and latency of employee-activity
task execution time, are not suitable and insufficient as the core
indicators for predicting employee performance. We argue that
the problem should be addressed by applying latent variable based
statistical learning models over the employee-activity log, and by
extracting hidden variables and parameters that have statistical
impact on employee-activity performance.

Example 1.1 Consider the Employee-Activity (EA) service-time

in Table 1(b), which is derived from a sample set of employee-
activity log records in Table 1(a). We observe that employee
E0001 performed two activities of A0001 and A0002. Employee
E0002 only performed activity A0001. Even though E0002 has
not worked on A0002 before, we are interested in questions like:
can we predict the potential service time of employee E0002 for
performing activity A0002? Can we estimate the probability that
E0002 could finish A0002 use less time than the average service
time of all other employees on A0002, i.e., (430+410+400)/3 =
413 in this example?

Problems with existing approaches. This workforce analysis
problem belongs to the class of prediction problems based on un-
supervised learning. Collaborative Filtering (CF) [15] is the most
representative unsupervised learning method. We will illustrate
the utility of the CF method and the hidden problems of using
CF for such type of workforce analysis problems. In general,
a CF method will predict the service time of an employee, say
E0002, on a new activity, say A0002, by summarizing the service
time data of all other similar employees on this activity. One way
to measure the similarity of employees is the pairwise weighted
similarity of their performance on the set of common activities.
With CF+AVG, one can predict the potential service time by
averaging of the weighted sum of similar employees’ service time
data for this activity. In our example, only E0001 has performed
A0002, and both E0001 and E0002 have performed the common
activity A0001. Thus, the CF+AVG estimates that E0002 could
finish A0002 by the average service time of E0001 over the three
log records on A0002: (430 + 410 + 400)/3 = 413. However,
this CF-based prediction formulation suffers severely, and does
not work well in the presence of skewed data distribution [16].
Concretely, if the set of common activities between a pair of
employees is significantly smaller compared to the total set of
activities performed by these two employees, thus there is highly
skewed data distribution exists in employee-activity relations,



2

then such common-set based similarity measure is inaccurate and
ineffective for measuring pairwise similarity of employees with
respect to their performance on activities.

Example 1.2 Consider Tab. 1, employee E0001 has three records
about A0001 with service time of 181, 803 and 190 respectively.
The service time of 803 seconds is clearly abnormal. Many factors
may have caused this skewedness, e.g., E0001 took a short break.
Assume that employee E0005 has never performed activity A0001.
To estimate the possible service time of E0005 for activity A0001,
by CF+AVG, we can predict the service time of E0005 for A0001
based on all of its similar employees’ service time data. If E0001
is the only one similar to E0005 and has performed activity
A0001, then the average service time of E0001 on A0001, i.e.,
(181+803+190)/3=391.3, is the estimated service time for E0005
to perform A0001. However, this CF averaging leads to incorrect
prediction result, which doubled the usual service time (less than
200 seconds) of E0001 on activity A0001, due to the presence of
skewed service time of 803 seconds.

The two examples show that different employees may perform
the same activity with varying service times and an employee
may perform the same activity with varying service time at
different times. This indicates that the service time in the log
is a complex feature and its value distribution over its domain
exhibits some uncertainty and randomness due to hidden relations
between employees and activities. Such latent features contribute
to the complexity of predicting employee’s service time on new
activities. Thus, such highly skewedness and random uncertainty
in the employee-activity-service time dataset can severely degrade
the effectiveness and accuracy of the existing methods.

Existing literature studies such randomness in the inference
features (e.g., service time) by manually defining some perfor-
mance indicators. For example, [7] considers the subjective factor,
e.g., the diligence of employee and the objective factor, e.g.,
the complexity of activity. [12], [14] addresses the problem by
requiring manually identifying whether an employee satisfies the
ability requirement of an activity. For instance, to find out whether
an employee is good at communication, one needs to pre-define
what the communication ability is and how it is measured and then
manually give a score on this ability for each pair of employee and
activity. These approaches are clearly subjective and not scalable.
In this paper, we show that it is important and feasible to develop a
statistical inference model to learn the hidden factors that influence
the performance of employees on their assigned activities, e.g., the
service time.

In this paper, we present the Latent Ability Model (LAM) as a
generative probabilistic learning framework by introducing latent
variables to capture the randomness of service time by modeling
it as a stochastic value generated based on the probability distri-
bution of latent variables. We make three original contributions.
First, we introduce latent ability variables to model the types
of hidden quantities that may influence the prediction accuracy
of service time. We capture the abilities provided by employees
in performing assigned activities, and the abilities required by
activities performed by employees of different ages and gender.
Second, we construct a latent ability model (LAM) to encode the
hidden quantities in a joint probability distribution of observed and
latent random variables. Given the EA service-time log records as
prior, we can uncover the particular hidden quantities by using an
inference algorithm to approximate the posterior - the conditional
distribution of the hidden variables given the observations. Finally,

we use the posterior and the latent parameters learned to construct
the predictive distribution, the distribution over future data based
on LAM and the observations from the service time log. To the
best of our knowledge, the LAM enabled probabilistic learning
framework is the first to use the latent ability model as the core
of a generative probabilistic process to learn latent features from
the employee-activity log data, instead of relying on a predefined
subjective set of skills/abilities [7], [12], [14].

2 PROBLEM FORMULATION

2.1 Real Datasets and Example Wish List

The dataset used in the study is obtained from the municipal
government of city Hangzhou in south China, which consists
of a total of 8 organizations of employee-activity log datasets.
A detailed description of these datasets is given in Section 6.
Table 1 provides sample log records, Table 2 provides sample
employee records and sample activity records, and Table 3 is a
summary of some statistical characteristics of the eight datasets.
The mission of this workforce analytics project is to help the
municipal government to improve the workforce efficiency by
mining the employee-activity logs. The desirable example wish
list includes questions such as (i) are the current employee-activity
assignments effective? (ii) where and what can we do to improve
the overall organizational efficiency? (iii) which activities need
to allocate more skillful employees? (iv) how to compare the
performance of different employees and find out the most skillful
employees in our organization? Bearing these example questions
in mind, we develop a general-purpose latent ability model based
learning framework, which can facilitate the statistical learning
process from multiple dimensions by combining both observable
and latent variables as well as hidden patterns embedded in the
employee-activity log datasets.

Note that ServiceTime in Tab. 1(b) is a derived aggregate
feature based on the StartTime and EndTime in Tab. 1(a). In the
rest of the paper, we refer to the employee-activity log in the
format of Tab. 1(b). We use n to denote the number of records
in the employee-activity log L, na and ne denote the number of
activities in the activity table and the number of employees in the
employee table respectively. Each record x ∈ L is defined by a
triple (a, e, s) where a is the ActivityID, e is the EmployeeID and
s is the ServiceTime.

2.2 Learning Complex Latent Features

From Examples 1.1 and 1.2, we see that the service time is a
complex variable which may be modeled as a mixture of latent
features. Although the factors that can lead to the variation and
skewed distribution of service time can be many, the most common
and dominating factors that are related to the service time log are
the set of abilities provided by employees in performing the activ-
ities, and the set of abilities required by activities for successful
execution in an organization. Instead of subjectively and manually
defining such abilities as done in existing literature [7], [12], [14],
[11], we propose to design a latent ability learning algorithm that
can automatically discover and infer such hidden quantities based
on the service time log through a LAM based generative proba-
bilistic inference framework. We treat these hidden quantities as
the latent ability variables, which may influence both the past and
future service time for any pair of employee and activity.



3

TABLE 1: The Employee-Activity logs
(a) Raw Employee-Activity log data

RecordID ActivityID EmployeeID StartTime CompleteTime

R0001 A0001 E0001 2014/9/10 15:10:33 2014/9/10 15:13:34
R0002 A0001 E0001 2014/9/10 15:21:10 2014/9/10 15:34:33
R0003 A0001 E0001 2014/9/10 15:40:12 2014/9/10 15:43:22
R0004 A0001 E0002 2014/9/10 15:50:01 2014/9/10 15:54:51
R0005 A0001 E0002 2014/9/10 16:01:03 2014/9/10 16:04:23
R0006 A0001 E0002 2014/9/10 16:12:33 2014/9/10 16:15:33
R0007 A0002 E0001 2014/9/10 16:16:10 2014/9/10 16:23:20
R0008 A0002 E0001 2014/9/10 16:25:12 2014/9/10 16:32:02
R0009 A0002 E0001 2014/9/10 16:32:27 2014/9/10 16:39:07
R0010 A0003 E0001 2014/9/10 17:03:45 2014/9/10 17:09:27
R0011 A0003 E0002 2014/9/10 17:10:06 2014/9/10 17:15:18
R0012 A0003 E0001 2014/9/10 17:16:20 2014/9/10 17:19:44
R0013 A0003 E0003 2014/9/10 17:20:20 2014/9/10 17:23:41

(b) Employee-Activity service time table

ActivityID EmployeeID ServiceTime(s)

A0001 E0001 181
A0001 E0001 803
A0001 E0001 190
A0001 E0002 290
A0001 E0002 260
A0001 E0002 240
A0002 E0001 430
A0002 E0001 410
A0002 E0001 400
A0003 E0003 342
A0003 E0003 312
A0003 E0002 204
A0003 E0002 201

TABLE 2: The sample fragment of context information about employees and activities
(a) Activity table

ActivityID Name Business

A0001 Application Checking Real Estate Transaction
A0002 Advanced Review Real Estate Transaction
A0003 Preliminary Review Real Estate Transaction
A0004 Application Checking Land Leasing

(b) Employee table

EmployeeID Name Gender Birthday

E0001 C. Zhou Female 1985/8/9
E0002 P. Wu Male 1965/12/10
E0003 J. Wang Male 1989/9/23
E0004 D. Chen Female 1990/1/3

TABLE 3: Seven district government datasets and a central department dataset

ShangCheng
District

(SC)

XiaCheng
District
(XC)

XiHu
District
(XH)

GongShu
District

(GS)

JiangGan
District

(JG)

BinJiang
District

(BJ)

ZhiJiang
District

(ZJ)

HangZhou
Central
(HZ)

# of Activity 75 5 92 80 5 175 155 155
# of Employee 51 45 312 91 44 456 435 291
# of Records 4641 741 535570 5375 720 1728413 1378838 1633323

# of Emp per Act
(Min,Avg,Max)

1,6.8,20 2,14.0,26 1,14.8,172 1,7.2,26 1,14.1,26 1,25.0,177 1,26.9,259 1,28.2,177

# of Act per Emp
(Min,Avg,Max)

1,9.6,45 1,1.6,4 1,4.2,52 1,6.1,45 1,1.5,5 1,9.1,57 1,8.5,40 1,14.4,53

# of Records per Pair of
Act and Emp

1.26 3.37 19.29 0.77 3.27 22.97 22.96 37.67

Percentage of Recorded
Act and Emp Pair

1.96% 2.22% 0.32% 1.10% 2.27% 0.22% 0.23% 0.34%

2.2.1 Latent Ability Variables

Definition 1 Let L =< A,E,S > denote the log of n
employee-activity service time records of the form (ai, ej , sij),
ai ∈ A, 1 ≤ i ≤ na, ej ∈ E, 1 ≤ j ≤ ne, sij ∈ S (|S| = n).
Let system-supplied parameter m denote the number of ability
variables (m � n). The ability set B = {bk} (1 ≤ k ≤ m)
contains m ability variables that are required by activities and
that are provided by employees for performing activities.

Although m is a system-defined parameter, the larger m will
lead to higher cost of learning. Our experiments show that for a
given employee-activity log dataset, one can find a near optimal
value of m, which gives stable and high log likelihood (accuracy)
for our latent ability model based probabilistic learning framework
(see Section 6). Note that the ability set B is neither predefined
nor obtained directly from the log L. Intuitively, given a set
of activities, if an employee had higher conditional probability
distribution on the set of abilities required by the activities, then we
defined the employee’s provided abilities accordingly. Similarly,
we can define the required abilities of an activity by the conditional
probability distribution on the set of abilities provided by all
the employees who have performed this activity. Naturally, if an

employee has a better score on the set of abilities than that of
another employee, then we can predict that the former employee
usually uses less service time to complete the given activity. Thus,
ability can be modeled as latent variable to connect activity and
employee in the context of service time, to capture the latent
relation between employee and service time, as well as the latent
relation between activity and service time.

We below introduce two statistical parameters of ability. The
first property is the frequency of ability required by the given
set of activities and the frequency of ability provided by the
given set of employees. The second property is the probability
of activity assigning to (requiring) each ability variable and the
probability of employee assigning to (providing) each ability
variable. Through statistical learning algorithm, we discover and
encode the relationship between B and employees and between
B and activities.

Definition 2 (Ability’s Frequency on Activity or Employee)
Given L and B, we define the frequency of bi required by all the
activities in L by θa,{i}, and the frequency of bi provided by all
the employees in L by θe,{i}.

To smooth these two frequency variables, we introduce the
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Dirichlet Distribution with parameter α as the prior distribution.
The prior distribution for ability on activity is Q(θa;α) =∏m(θa{i})

α−1/B(α) and the prior distribution for ability on
employee is Q(θe;α).

Definition 3 (Assignment Probability on Ability) Given L and
B, the probability of assigning ability bi to activity aj is defined
by P (aj |bi) such that ∀bi ∈ B, 1 ≤ i ≤ m,

∑n
j=1 P (aj |bi) =

1. Similarly, the probability of assigning ability bi to employee
ej is defined by P (ej |bi) such that ∀bi ∈ B, 1 ≤ i ≤
m,

∑n
j=1 P (ej |bi) = 1. For presentation brevity, we denote

P (aj |bi) by βa{i,j} and P (ej |bi) as βe{i,j}.

We use the matrix βa = {βa{i,j}} to denote the probability
for assigning all m abilities to all na activities (1 ≤ i ≤ m,
1 ≤ j ≤ na) and the matrix βe = {βe{i,j}} to denote the
probability for assigning all m abilities to all ne employees. Note
that the sum of each ability row i is 1 for both βa and βe and
such constraint does not apply for the activity columns in βa or
employee columns in βe. In fact, the values in a column of βa
and βe are independent of each other.

Note that both frequency parameters θa, θe and assignment
parameters βa,βe are unknown in the beginning. There is a
number of of ways to assign the initial distribution for βa and βe.
Different initial settings will result in the same final value though
they may have different convergence rate. Their final values are
obtained through iterative learning.

Example 2.1 Consider the running example in Table 1, with
m = 3, B = {b1, b2, b3}, α = 5, we initialize θa, θe, βa, βe
as shown in top left of Figure 1. After iterative learning of these
latent ability parameters, the final results of θa, θe, βa, βe are
given in the bottom left of Figure 1.

2.2.2 Latent Parameters for Service Time

To model the actual impact of different ability frequencies and
different ability assignments on service time prediction, we iden-
tify the following three contributing factors, which are statistical
properties of service time. We call them the service time parame-
ters. We assume that service time is sampled from an exponential
distribution that related to these three factors:

The complexity factor of activity, denoted by ca, represents
activity’s sophistication factor on service time. ca is a vector of
size na, with caj as the complexity factor of the jth activity aj
(1 ≤ j ≤ na). Intuitively, an activity has a higher complexity
factor than another if it takes more service time no matter which
employee performs the activity.

The complexity factor of employee, denoted by ce, represents
employee’s sophistication factor on service time. ce is a vector
of size ne, with cek as the complexity factor of employee ek
(1 ≤ k ≤ ne). An employee has a higher complexity factor than
another, if this employee uses less service time no matter which
activity he/she is assigned to.

Penalty from ability mismatch, denoted by ω, represents the
amount of penalty for employee-activity ability mismatch. The
higher penalty is given if an employee is considered mismatched
for an activity if his provided ability quantities are not matched
well to the required ability quantities of the activity. Consequently
this employee takes longer service time than the others. ω is a
global parameter contributing to all employees and all activities.

Note that the values of ca, ce, ω are positive real numbers.
There are several ways to set the initial values for these param-

eters, all of which will result in the same final value but with
different convergence rates.

Let the function φ denote the probability density function on
exponential distribution with parameter λ, j denote the activity
and k denote the employee in the ith record of L. We model the
relation between latent ability and service time by using the above
three parameters and the exponential distribution:

φ(si;λi,j,k) = λi,j,k exp(−λi,j,ksi) (1)

where

λ−1
i,j,k =

{
cajcek if βa{q,j} = βe{q,k},∀q ∈ {1, ...,m}
cajdekω otherwise

(2)

Consider a situation such that if we have the correct assignment
for each employee-activity pair on ability, then all the service
time values in the employee-activity log should fit exactly the
exponential distribution φ with final values of ca, ce and ω.
Intuitively, these factors contribute to the relationship between
service time and employee/activity assignment on ability and
thus the distribution of service time values. When the value of
required ability variable (activity) matches that of provided
ability variable (employee), we use an exponential distribution,
whose expectation is the multiplication of ca and ce, as the
distribution of service time. Otherwise, we use the exponential
distribution, whose expectation is the multiplication of all three
parameters: ca, ce, ω.

2.3 Learning Objectives

To complete the problem formulation, in this section we define
our primary learning objectives for workforce analytics over the
employee-activity service time log.

Definition 4 (Performance Prediction) Let E denote the em-
ployee table of ne records, A denote the activity table of na
records, and L = {(ej , ak, si)|ej ∈ E, ak ∈ A, si ∈ R} denote
the employee-activity service time log of n records (1 ≤ i ≤ n,
1 ≤ j ≤ ne, 1 ≤ k ≤ na). We construct the latent ability
model (LAM) as a generative probabilistic learning framework,
denoted by ϕ, such that for any pair of employee and activity, i.e.,
∀ej ∈ E, ak ∈ A, we can predict the service time s by employing
the LAM learning algorithm ϕ(ej , ak) over L if (ej , ak, s) /∈ L.

The next learning objective is employee ability estimation,
which is closely related to the employee performance prediction,
our primary learning goal.

Definition 5 (Employee Ability Estimation) Given the EA
working log L, we want to build a statistical inference model
that can estimate the ability of an employee based on the set of
activities for which this employee has performed and the service
time of other employees on the same set of activities.

The employee’s ability score may help the organization to
study the performance and the job satisfactory level of its em-
ployees, especially whether an employee’s ability score the re-
quirements of the activities assigned to him/her in predicting the
performance. The third learning objective is employee-activity
ability match-up score, which can be seen as an intuitive extension
to the previous two learning objectives.

Definition 6 (Employee-Activity Matchup Score) Given the
EA working log L, we want to build a learning model to
find out the activity-employee ability matchup score for any



5

Activity Employee Service
Time

A0001 E0001 181
A0001 E0001 803
A0001 E0001 190
A0001 E0002 290
A0001 E0002 260
A0001 E0002 240
A0002 E0001 430
A0002 E0001 410
A0002 E0001 400
A0003 E0003 342
A0003 E0003 312
A0003 E0002 204
A0003 E0002 201

B0001

B0002B0003E0002

E0001

L

Service time prediction
of E0002 on A0002

E0001 E0002 E0003

A0001 0.0936 0.0543 0.0058

A0002 0.0537 0.0214 0.0001

A0003 0.0041 0.0543 0.0461

B0001 B0002 B0003
0.33 0.33 0.33

A0001 A0002 A0003

B0001 0.5 0.25 0.25

B0002 0.25 0.5 0.25

B0003 0.25 0.25 0.5

𝛽#
E0001 E0002 E0003

B0001 0.5 0.25 0.25

B0002 0.25 0.5 0.25

B0003 0.25 0.25 0.5

𝛽$

𝜃#

𝜃$ 𝑐𝑎

𝑐𝑒

𝜔 = 50

Parameters
Estimation

𝜃#
(./0)

M Step

𝑐#
(./0)

GD

ℒ(./0) = P(Θ(./0)|𝐿) Evaluate Objective
Function

𝜏 𝑇
Eq. 11 Eq. 13

E Step

𝜃$
(./0) 𝛽#

(./0) 𝛽$
(./0)

Eq. 16,17,19,20

𝜔(./0)
Eq. 21, 22, 23

When Converge on ℒ

Eq. 10

Not
Converge
on ℒ

Initialized Parameters

B0001 B0002 B0003
0.33 0.33 0.33

A0001 A0002 A0003
10 10 10

E0001 E0002 E0003
10 10 10

B0001 B0002 B0003
0.34 0.33 0.33

A0001 A0002 A0003

B0001 0.57 0.43 0

B0002 0.71 0.24 0.05

B0003 0.11 0 0.89

𝛽#
E0001 E0002 E0003

B0001 0.81 0.19 0

B0002 0.54 0.46 0

B0003 0.01 0.52 0.47

𝛽$

𝜃#

𝜃$ 𝑐𝑎

𝑐𝑒

𝜔 = 57.7Trained Parameters

B0001 B0002 B0003
0.34 0.33 0.33

A0001 A0002 A0003

26.32 32.86 23.54

E0001 E0002 E0003

28.18 23.66 19.38

B0001 B0002 B0003

E0001 1.0000 1.0000 0.0163
E0002 0.2280 0.8665 1.0000
E0003 0.0000 0.0024 0.8932

Inferring

Matchup score 𝑆

Employee Ability
score 𝐸

Performance Prediction

E0003

Phase I Phase II

𝑐$
(./0)

Eq. 27

Fig. 1: Illustration of the LAM learning framework by a simple example. Phase I: LAM learns to estimate the set of latent parameters about
its m ability variables: Θ = {θa,θe,βa,βe, ca, ce,ω}, initialized before iterative learning. Four steps in iteration t: E-step updates the
conditional expectation Q(Θ|Θ(t)); M-step updates θ(t+1)

a , θ(t+1)
e , β(t+1)

a and β(t+1)
e . GD step updates c(t+1)

a , c(t+1)
e and ω(t+1). Evaluation-

step computes the objective function L, check if L coverages, output the extracted latent features, otherwise go to iteration (t + 1). Phase II:
LAM prediction using the latent features learned. The performance of E0002 on A0002 can be predicted by the probability (y-axis) of service
time for a range of increasing values (x-axis), the matchup score of for any employee-activity pair can be estimated, and the employee ability
score can be inferred for all m ability components.

activity-employee pair. This score shows how suitable an
employee-activity assignment is.

Example 2.2 Consider our running example in Table 1, compared
to E0003, employee E0002 has consistently shorter service time
for activity A0003. From the Employee Ability Score E shown in
Figure 1, based on the log L, our LAM prediction algorithm (see
Section 5.3) gives E0002 higher score on all abilities than E0003,
e.g., for activity A0003, E0002 has a higher matchup score of
0.0543 comparing to E0003, with matchup score of 0.0461.

3 FRAMEWORK OVERVIEW

We have defined three learning objectives, solving three different
problems in the workforce analytics over an employee-activity
log. By introducing the latent ability variables and the set of la-
tent parameters θa, θa, βa, βe, ca, cd, ω, these seemingly different
problems become closely related. Also for our learning objectives,
the only important matter regarding m ability variables is the dif-
ference of one ability from another with respect to the three types
of observations in the log: activity, employee and service-time.
We build a latent ability model (LAM) based on observations,
latent ability variables, latent parameters, and their dependence
relations through a generative probabilistic process. Instead of
considering all possible quantities of ability variable, we employ a
graphical model on both observations and latent ability variables.

This constrains the domain of ability to m mixture components.
The mixture model assumes that the log data are clustered and
that each data point is drawn from a distribution associated with
its assigned cluster. The hidden variables of the model are the
cluster assignments and (hyper) parameters to the pre-cluster
distributions. The inference algorithm learns the latent variables
behind the observable variables, and encode their relationship by
a joint probability distribution of hidden and observed variables.
Given the observations inL, by getting a prior probability for each
random variable, we can uncover the particular latent variables
through the posterior, the conditional distribution of the latent
variables. This enables us to formally describe how the hidden
variables and observations interact in a probability distribution.
This posterior reveals hidden structure in our service time log data:
it clusters the data points into m groups and describes the location
(i.e., the mean) of each group. The final goal of this inference is
to use the posterior to construct the predictive distribution, derived
from the posterior, which provides the distribution of the future
data points that the observation and the model imply.

Given the training data with ground truth, the generative
model can be trained by tuning the parameters to maximize the
posterior probability. This parameter estimation method is called
the Maximizing a Posterior (MAP). After completion of training,
the generative model can infer the probability of future data taking
values from its domain.
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Fig. 2: The graphical model of LAM generative process.

The LAM analytic framework performs probabilistic learning
and prediction in two phases. The first phase is dedicated to latent
feature extraction through generative probabilistic inference with
the objective of building a prediction model. The second phase
leverages the latent features and parameters learned from the
first phase to predict employee performance, estimate employee’s
ability and compute employee-activity matchup score. These two
phases of inference shares the same probabilistic inference model
− LAM on the hidden relations among employee, activity, service
time and ability. Fig. 1 provides an illustrative sketch of this two
phase probabilistic learning framework.

4 LAM CONSTRUCTION

4.1 The Generative Process
We construct the latent ability model using a generative proba-
bilistic process, as shown in Fig. 2. It describes how the latent
ability variables interact with the observation variables to govern
the distribution of the observations. The circle represents a variable
and the direct edge from one circle to another represents the
dependency of the latter variable on the former one. The grey
circle represents an observation variable. The rectangle labeled
with symbol n or m represents a process that repeats for n or m
times. A summary of the key notations is provided in Tab. 4.

In the generative process of LAM, the mixture components
βa and βe, the mixture proportions θa and θe, and the service
time parameters ca, ce, ω are learned iteratively. The mixture
assignments za and ze depend on the mixture proportions θa
and θe, which parameterize the distribution of the mixture ability
assignment to activity βa and the distribution of the mixture
ability assignment to employee βe respectively. Given log L, an
observation xi = (ai, ei, si) ∈ L depends on both the mixture
components βa,βe, and the mixture assignment za{i}, ze{i}. The

TABLE 4: Notations and descriptions

Notations Descriptions

n, m Record number and ability number.
na,ne Activity number and employee number.
θa The vector in Rm, whose element θa{i} denotes the proba-

bility of requiring ability i for all activities.
∑
i θa{i} = 1.

θe The vector in Rm, whose element θe{i} denotes the proba-
bility of owning ability i for all employees.

∑
i θe{i} = 1.

βa The matrix in Rm×na , whose element βa{i,j} denotes the
probability of activity j requiring ability i. ∀i,

∑
j βa{i,j} =

1.
βe The matrix in Rm×ne , whose element βe{i,j} denotes the

probability of employee j owns ability i. ∀i,
∑
j βe{i,j} = 1.

za,ze Ability assignment on activity and employee.
ca, ce, ω Activity complexity, employee complexity and mismatch

penalty factor

graphical model shown in Fig. 2 illustrates the structure of the
factorized joint distribution and the flow of the generative process
of LAM.

4.1.1 Dirichlet Prior
Given θa, the frequency of mixture ability assignment on activity,
and θa{i}, the fraction of distinct activities requiring ability i,
satisfying

∑m
j=1 θa{j} = 1, we define the prior distribution of θa

and its probability density function by Dirichlet Prior:

θa|α ∼ Dirichlet(α) (3)

where α is the prior parameter, which is set to a constant at
initialization of the training phase. Dirichlet Prior is the smoothing
approach to guarantee that the element value of θa would not be
too small or too big. Similarly, we smooth θe by using the same
Dirichlet Prior with the same α.

θe|α ∼ Dirichlet(α) (4)

This design is shown in Fig. 2 by α, θa, θe and the direct edges
between them, each edge conducts the conditional probability with
respect to the two end nodes. Concretely, the edge from α to
θa represents the conditional probability P (θa|α), which is the
probability of θa given α. The formalization of this conditional
probability is exactly the Dirichlet Prior. Similarly the edge from
α to θe represents the conditional probability P (θe|α).

4.1.2 Ability Sampling
This step is sampling ability from its frequency on activity and its
frequency on employee. Given a log record xi = (ai, ei, si) ∈ L
(i ∈ {1, ..., n}), we consider the following sampling process:
the required ability is a sample from the ability set of size m,
according to the frequency θa, i.e., the probability of getting the
required ability by ai is exactly θa{i}. Formally:

za|θa ∼ Discrete(θa) (5)

Similarly, the probability of offering the provided ability by ei is
exactly θe{i}, thus we have

ze|θe ∼ Discrete(θe) (6)

This step is repeated by n times with each xi ∈ L as the input, as
shown in Fig. 2.

4.1.3 Activity/Employee Ability Assignment
This step considers the probability of assigning ability za to
activity ai and assigning ability ze to employee ei for each log
record xi = (ai, ei, si) ∈ L. To build the relation between the
required ability za and ai, we use the assignment probability βa
as the parameter. The activity ai with ability za{i} is sampled
from the following distribution:

ai|za,βa ∼ Discrete(βa{za}) (7)

It means that the conditional probability of ai given the required
ability za{i} is exactly βa{za}. Similarly, we introduce the em-
ployee ability assignment probability βe to get the conditional
probability:

ei|ze,βe ∼ Discrete(βe{ze}) (8)

βa and βe have size na × m and ne × m respectively with
m independent mixture ability components. This step repeats n
times, one for each log record xi (1 ≤ i ≤ n), as shown in Fig. 2
by the edge from βa{j} to ai and the edge βe{k} to ei.
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4.1.4 Service Time Sampling
The last step is sampling service time si given the log record
xi ∈ L, the required ability za and the provided ability ze
and the three service time parameters: activity complexity ca,
employee complexity ce and mismatch penalty ω. For a log
record xi = (ai, ei, si) ∈ L, we use the following conditional
probability:

si|za, ze, ca, ce, ω ∼ φ(si;λi,j,k) (9)

where φ is the exponential distribution whose expectation is λ
as defined in Section 2.2.2. This formalization states that the
service time follows an exponential distribution in expectation of
the multiplication of activity complexity and employee complexity
if the provided ability matches the required ability. Otherwise, the
mismatch penalty should be taken into consideration.

4.1.5 Summary
The LAM generative process shown in Figure 2 is summarized
as follows: Given the log L with n records, na activities,
ne employees, m latent ability components, both required
ability za and provided ability ze are latent variables of size
m (1 ≤ j, k ≤ m). For activity ai and employee ei in
xi =< ai, ei, si >∈ L:
1. Draw required ability proportion θa|α ∼ Dir(α) for ai.
2. Draw provided ability proportion θe|α ∼ Dir(α) for ei.
3. Draw required ability sampling za|θa ∼ Discrete(θa).
4. Draw provided ability sampling ze|θe ∼ Discrete(θe).
5. Draw activity assignment to ability ai|za,βa ∼ Discrete(βa{za}).
6. Draw employee assignment to ability ei|ze,βe ∼
Discrete(βe{ze}).
7. Draw service time sampling si|za, ze, ca, ce, ω ∼ φ(si;λi,j,k).
The generative process has the following latent parameters: θa,
θe, βa, βe, ca, ce and ω. We describe how we learn these latent
features in the next section.

4.2 Parameter Estimation
In this section we use Θ = (θa,θe,βa,βe, ca, ce, ω) to denote
the set of latent features involved in the generative process of our
latent ability model, which are also the set of parameters to be
learned through parameter estimation. Several parameter learning
methods can be used to estimate parameters in Θ from observation
L, such as Maximum Likelihood Estimation (MLE), Maximum A
Posterior (MAP). In the first prototype of LAM, to smooth θa and
θe by the same α, we choose MAP, which treats a parameter in
Θ as a random variable, assumes a prior probability of Θ: P (Θ),
and uses the observation data L of n records to get posterior
probability of Θ: P (Θ|L). Concretely, the posterior probability
is defined as follows:

L =P (Θ|L) = Z

n∏
i=1

m∑
j=1

m∑
k=1

τi,j,kφ(si;λi,j,k) (10)

where

τi,j,k = βa{j,ai}βe{k,ei}θa{j}θe{k}
1

B(α)

m∏
i′=1

(θa{i′}θe{i′})
α−1

. (11)

Z is a constant for normalization and it keeps the sum of all prob-
abilities equal to 1. Equation 10 is the product of n observations
in L, m ability-to-activity assignment probabilities for each of the
na activities (j = 1 : m) and m ability-to-employee assignment
probabilities for each of the ne employees (k = 1 : m). The proof
of this posterior equation is given in appendix.

To solve this MAP (Maximum A Posterior) problem, we em-
ployee the expectation-maximization(EM) algorithm to the subset
of parameters U = {θa, θe, βa, βe}, and gradient descent (GD)
to the parameters V = {ca, ce,ω} at the same time. The
EM algorithm searches the space of parameters by maximizing
the expectation of log likelihood, denoted by Q(Θ|Θ(t)). By
considering the two latent variables U and V , we compute the
posterior as follows:

P (Θ|L,U ,V )

=Z

n∏
i=1

m∑
za=1

m∑
ze=1

I(ui = j)I(vi = k)τi,j,kφ(si;λi,j,k)

(12)
where Z is the same as defined in Equation 10, and I(·) function
is an indicator function which returns 1 if the input condition is
true, and returns 0 otherwise. Given that Eq. 12 holds the same
expectation as Eq. 10, thus, we solve Eq. 12 instead.

The EM-GD algorithm is iterative on t until L converge. We
provide the pseudo-code as Algorithm 1. Before starting the itera-
tion t, all parameters are initialized (recall Figure 1 top portion for
an example). In each iteration t, we first perform E-step and M-
step and then perform GD-step and Evaluation-step. In E-step,
the expectation on the previously learned parameters Q(Θ|Θ(t))
is calculated. Then, in M-step we get new update of parameters
in U : θ(t+1)

a , θ(t+1)
e , β(t+1)

a and β(t+1)
e . Followed by GD-step,

in which we get new update of parameters in V : c(t+1)
a , c(t+1)

e

and ω(t+1). Finally, we update the objective function L(t+1) in
Evaluation-step. We below describe each step in detail.

E-step refers to the expectation step, in which we calculate
the conditional distribution of the ability to activity assignment
probability ui and the ability to employee assignment probability
vi by Bayes theorem, given the current estimation of parameters
Θ(t).

T
(t)
i,j,k =P (ui = j, vi = k|ai, ei, si,Θ(t)

)

=
τi,j,kφ(si;λi,j,k)∑m

j′=1

∑m
k′=1

τi,j′,k′φ(si;λi,j′,k′ )

(13)

we calculate the conditional expectation as follows:

Q(Θ|Θ(t)
) =E

U,V |L,Θ(t) [logP (Θ|L,U ,V )]

=

n∑
i=1

m∑
j=1

m∑
k=1

T
(t)
i,j,k log(τi,j,kφ(si;λi,j,k))

(14)

M-step refers to the maximization step, in which we update
parameters by maximizing the condition expectation Q(Θ|Θ(t)).
For θa with the constraint

∑m
j=1 θa{j} = 1,

θ
(t+1)
a = argθa maxQ(Θ|Θ(t)

)

= argθa max

n∑
i=1

m∑
j=1

m∑
k=1

T
(t)
i,j,k(log θa{j}+

(α− 1)

m∑
i′=1

log(θa{i′}))

(15)

Then we have

θ
(t+1)

a{j} =
(α− 1)n+

∑n
i=1

∑m
k=1 T

(t)
i,j,k

(m(α− 1) + 1)n
. (16)

In a similar way, we can update θe as follows:

θ
(t+1)

e{k} =
(α− 1)n+

∑n
i=1

∑m
j=1 T

(t)
i,j,k

(m(α− 1) + 1)n
. (17)

Next, we consider βa, which is a matrix in the space
Rm×na , and na is the number of activities. βa{j,q} represents
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the probability of activity q requiring ability j, with the constraint∑na
q=1 βa{j,q} = 1. We can update βa by solving

β
(t+1)
a = argβa maxQ(Θ|Θ(t)

) (18)

which means

β
(t+1)

a{j,q} =

∑n
i=1

∑m
k=1 T

(t)
i,j,kI(ai = q)∑n

i=1

∑m
j′=1

∑m
k=1 T

(t)

i,j′,kI(ai = q)
. (19)

Similarly, we update βe, which is a matrix in the space
Rm×ne and ne is the number of activities. βe{k,q} represents
the probability of employee p having ability k, with the constraint∑ne
p=1 βe{k,p} = 1 and

β
(t+1)

e{k,p} =

∑n
i=1

∑m
j=1 T

(t)
i,j,kI(ei = p)∑n

i=1

∑m
j=1

∑m
k′=1

T
(t)

i,j,k′I(ei = p)
. (20)

GD-step estimates the parameters ca, ce and ω by employing
gradient descent (GD). After M-step, we update ca, ce and ω by
following their gradient direction with learning rate γ, which is
set in LAM configuration. The following three equations present
the gradient direction for parameters ca ce and ω respectively.

∂L
∂ca(q)

=

n∑
i=1

m∑
j=1

m∑
k=1

T
(t)
i,j,k(−

1

cq
+

si

ce(ei)
ca2
q

(I(j = k) +
1

ω
I(j 6= k)))I(ai = q)

(21)
Here is the gradient for ce:

∂L
∂ce(q)

=

n∑
i=1

m∑
j=1

m∑
k=1

T
(t)
i,j,k(−

1

dq
+

si

ca(ai)
ce2
q

(I(j = k) +
1

ω
I(j 6= k)))I(ei = q)

(22)
Then the gradient for ω:

∂L
∂ω

=

n∑
i=1

m∑
j=1

m∑
k=1

T
(t)
i,j,k(−

1

ω
+

si

ca(ai)
ce(ei)

ω
)I(j 6= k) (23)

Evaluation-step is the last step in the iterative parameter
learning process. In this step, we re-calculate the posterior L by
Eq. 12 and update the objective function L(t+1). The iteration
stops when the objective function L meets its convergence condi-
tion.

5 LAM PREDICTION: CASE STUDIES

5.1 Performance Prediction

Given a pair of employee e′ and activity a′ and (e′, a′) /∈ L,
we can predict the service time s′ of e′ on a′ by inferring the
following conditional probability.

P (s
′|a′, e′)

=Zp

m∑
za=1

m∑
ze=1

φ(s
′
;λi,za,ze )βa{za,a′}θa{za}βe{ze,e′}θe{ze}

(24)

where Zp is a constant and can be inferred as the normalization
factor as follows:

Z
−1
p =

∫ ∞
0

m∑
za=1

m∑
ze=1

φ(s;λi,za,ze )βa{za,a′}θa{za}βe{ze,e′}θe{ze}ds

=

m∑
za=1

m∑
ze=1

βa{za,a′}θa{za}βe{ze,e′}θe{ze}

(25)

Algorithm 1 LAM EM-GD Algorithm for Parameter Estimation
Input: L: observation records where Li =< ai, ei, si >. Each Employee si is
indexed from 1 to M and each activity ai is indexed from 1 to N .
α : the prior parameter.
γ : learning rate in GD.
m : the number of latent ability mixture components.
Output: Θ.

1: t = 1
2: L(1) = Inf
3: L(0) = 0
4: while ‖L(t) − L(t−1)‖ < ε do
5: //E-step
6: for i = 1 to n do
7: for j = 1 to m do
8: for k = 1 to m do
9: T

(t)
i,j,k =

τi,j,kφ(si;λi,j,k)∑m
j′=1

∑m
k′=1

τ
i,j′,k′φ(si;λi,j′,k′ )

10: end for
11: end for
12: end for
13: //M-step
14: for i = 1 to m do

15: θ
(t+1)

a{i} =
(α−1)T

(t)
s +

∑n
j=1

∑m
k=1 T

(t)
j,i,k

(m(α−1)+1)∗T (t)
s

16: θ
(t+1)

e{i} =
(α−1)T

(t)
s +

∑n
k=1

∑m
j=1 T

(t)
k,j,i

(m(α−1)+1)∗T (t)
s

17: for q = 1 to na do

18: β
(t+1)

a{i,q} =

∑n
j=1

∑m
k=1 T

(t)
j,i,k

I(aj=q)∑n
j=1

∑m
j′=1

∑m
k=1

T
(t)

j,j′,k
I(aj=q)

19: end for
20: for q = 1 to ne do

21: β
(t+1)

e{i,q} =

∑n
k=1

∑m
j=1 T

(t)
k,j,i

I(ek=q)∑n
k=1

∑m
j=1

∑m
k′=1

T
(t)

k,j,k′
I(ek=q)

22: end for
23: end for
24: //GD-step
25: for i = 1 to na do
26: ca

(t+1)

(i)
= c

(t)
i + γ ∗ ∂L(t)

∂ca
(t)
(i)

//by Eq.21

27: end for
28: for i = 1 to ne do
29: ce

(t+1)

(i)
= d

(t)
i + γ ∗ ∂L(t)

∂ce
(t)
(i)

//by Eq.22

30: end for
31: ω(t+1) = ω(t) + γ ∗ ∂L(t)

∂ω(t)
//by Eq.23

32: //Evaluating-step
33: L(t+1) = P (Θ|L)
34: t=t+1
35: end while
36: return Θ

Note that the service time is a continuous variable. Thus, we use
the probability density Ψ(s′|a′, e′) to present the probability that
employee e′ can finish activity a′ in s′ seconds.

Ψ(s
′|a′, e′)

=

∫ s′

0

P (s|a′, e′)ds

=Zp

m∑
za=1

m∑
ze=1

βa{za,a′}θa{za}βe{ze,e′}θe{ze}(1− exp(−λi,za,zes
′
))

(26)
Here Zp is a constant to normalize the probability density.

Example 5.1 Consider the running example in Fig. 1, we want to
infer the probability of employee E0002 completing activity A0002
in 413 seconds (the average service time on E0002). We initialize
ca = 10, ce = 10, ω = 50 as shown in Figure 1. By Eq. 25, we
get Z−1

p = 0.0214. Then by Eq. 26, we calculate the probability
density Ψ = 0.443. This indicates that there is 44.3% probability
that employee E0002 can complete activity A0002 in 413 seconds.

5.2 Employee Ability Prediction

Let E denote the employee-ability set and Ei,j denote the ability
score of employee i with provided ability j. Given that βe
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represents the distribution of ability on employee and βe,{i,j}
denotes the probability of employee i with provided sampling
ability j. Thus, we can compute the ability score using the
following normalized probability:

Ei,j =
βe{j,i}

max(βe{j})
(27)

where βe{j} is the j’th row of βe. max(βe{j}) is the max factor
for all employees on ability j. Note that Ei,j is the score of
employee i on ability j. With this employee-ability set E, we can
compare any pair of employees in term of their ability. There are
two possible situations. First, one employee prevails over another
on all ability scores, namely, for any two employees, ei and ei′ ,
if ∀bj ∈ B, j ∈ {1, ...,m}, we have Ei,j > Ei′,j . It says that
employee ei did better than employee ei′ on all of the activities
that they both participated. In another situation, an employee has
at least one ability score larger than that of the other.

Example 5.2 In our running example of Fig. 1, the ability
score of employee E0002 is the normalization of the weight
vector (0.19, 0.46, 0.52) by the max known weight for each
ability. For B0001, B0002, B0003, the max known weight
is 0.81, 0.54, 0.52 respectively. Thus, the ability score is
(0.19, 0.46, 0.52)./(0.81, 0.54, 0.52) = (0.23, 0.87, 1), which is
represented by the triangle in the bottom right of Fig. 1.

5.3 Matchup Score Estimation

A well-defined matchup score is an indicator of the degree of
employee’s satisfaction with respect to the activity’s required
ability. We define the matchup score of employee ei to activity
ai by the probability that employee ei satisfies all the ability
requirements {z} of activity ai, namely

Si,j =

m∑
z

P (z|i)P (z|j) =

m∑
z

βa{z,i}βe{z,j}θa{z}θe{z} (28)

One way to provide better matching is to introduce the candidate
activity group G(i) = {j|Si,j > δ}, where δ is a constraint
constant. A large |G(i)| shows that employee i is an all-around
employee.

Example 5.3 Consider the matchup score of employee E0002 on
activity A0001 in Fig. 1 with βa,A0001 = (0.57, 0.71, 0.11) and
βe,E0002 = (0.19, 0.46, 0.52). By Eq. 28 we get the matchup
score of E0002, namely S2,1 = 0.19 ∗ 0.57 ∗ 0.34 ∗ 0.33 +
0.46 ∗ 0.71 ∗ 0.33 ∗ 0.33 + 0.52 ∗ 0.11 ∗ 0.33 ∗ 0.33 = 0.00543.
Furthermore, we can get the matchup scores of employee E0002
on all three activities, which are (0.0543, 0.0214, 0.0543), shown
in Phase 2 Matchup score S in Fig. 1. We infer that A0001 and
A0003 are the most appropriate activities for E0002.

6 EXPERIMENTS

6.1 Datasets and Experiments Setup

The employee-activity service log datasets are collected from an
operational workflow system deployed by the municipal gov-
ernment of Hangzhou City in China. This workflow system
was deployed in seven district government departments and a
central department, namely, ShangCheng (SC), XiaCheng (XC),
XiHu (XH), Gongzhu (GS), BinJiang (BJ), ZhiJiang (ZJ) and
HangZhou Central (HZ). We collect the log from May. 2013 to
Apr. 2015, consisting of a total of 5,287,621 records, involving
1725 employees, 742 activities. This log collection is about the

department of Land Examination and Approval from all eight
departments. Table 3 shows the statistics about these log datasets.
We remove the two small log datasets: XC and JG, which only
involve 5 activities. In all experiments, we divide the whole log
dataset into training set and testing set by 7:3 ratio. We also ensure
that the pairs of employee and activity in the testing set do not
appear in the training set.

All experiments are conducted on Mac OS X EI Capitan with
16GB 1867MHz DDR3 memory and 3.1GHz Intel Core i7. We
implement all algorithms in MATLAB 2015b.

6.2 Evaluation Models and Metrics

To evaluate the effectiveness of our approach in terms of prediction
accuracy and efficiency, we compare it with three existing repre-
sentative approaches in Latent Dirichlet Allocation (LDA) [17]
and Collaborative Filtering (CF) [18]. We choose LDA because
both LDA and LAM use a generative statistical model. LDA
creates a separate feature spaces for each observation variable and
explains each type of observations by a set of unobserved features
(quantity groups) to capture some latent structure of the data that is
similar. LAM uses a unified latent feature space of m latent ability
variables, and extracts hidden quantities as latent parameters that
describe relations and interactions between observation variables
and latent ability variables. We choose CF because it is the most
popular approach to mine correlations between two sets of entities.

The first approach is (LDA+GLM), which fits LDA on the
observations of activities and employees separately with the same
number of ability groups and then fits the service time observa-
tions with a generalized linear model. The second approach is
(LDA+SVR), which fits LDA on the log data first and then use
the support vector regression with RBF kernel [19]. The third
approach is called (AVG+CF), which pre-processes the raw log
data into the service time matrix with employee and activity as
rows and columns, and the average service time as the element
value given an employee and an activity, and uses the collaborative
filtering (CF) to predict the unknown service time.

We use the log likelihood to measure the accuracy/quality of
prediction, which is defined by

Lg =
∑
i=1

log(P (si|ai, ei;Θ)) (29)

where < ai, ei, si > is a record in the testing set.
Given an employee-activity pair, ai and ei, LAM outputs a

probability distribution on the values of service time si as shown in
Figure 1, whereas LDA+SVR, LDA+GLM and AVG+CF estimate
the service time si using their own method as the prediction result.
For comparison, we apply an exponential distribution whose
expectation is the predicted service si as the output distribution
for LDA+SVR, LDA+GLM and AVG+CF respectively. We set the
Dirichlet parameter α to 5.0 for all four models. The model that
gives higher probability to the unseen employee-activity pair better
captures the hidden interactions between observation variables and
latent ability variables. We measure and compare the effectiveness
of the four models in terms of accuracy by log likelihood and
efficiency by execution time.

6.3 Employee Performance Prediction

We evaluate and compare the effectiveness of the four models for
employee performance prediction in both accuracy and efficiency,
first on a combined collection of the six log datasets and then on
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Fig. 3: The log likelihood and prediction execution time on combined log collection.
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Fig. 4: The comparison between the statistical result and predicted distribution of service time.
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Fig. 5: The log likelihood comparison on 4 log datasets by varying m, the number of ability groups
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Fig. 6: The log likelihood comparison on 4 log datasets with varying dataset density.
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Fig. 7: The execution time comparison on 4 log datasets with varying m, the number of ability groups.
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Fig. 8: The execution time comparison on 4 log datasets with varying dataset density.
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Fig. 9: The performance comparison among different contexts.

each of the six log datasets. Fig. 3 shows the comparison results
on the combined log collection. LAM outperforms all other three
models in quality. To vary the density of the training set, we

remove some data in training set to make it sparse. Concretely,
the training set density of x% refers to (1 − x%) of training
dataset was randomly removed. When we vary the density of the
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Fig. 10: The comparison of employees E0415, E1885 on activity A775, A258.
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Fig. 11: The comparison employee E1254, E2426 on activity A941, A27.

training dataset, we use the default setting of m = 7 and when
we vary m, we use the default density setting of 100%. Fig. 3
(a) and (b) show the log-likelihood measures of all four models
by varying m and the density of the training set respectively.
In both cases, LAM performs significantly better than the other
three models in log-likelihood performance. LDA+GLM slightly
better than LDA+SVR and AVG+CF. Figure 3 (c) and (d) show
the execution time comparison by varying m and the density
of the training set respectively. In both case, LAM consistently
outperforms AVG+CF with the shortest time to finish. LDA+GLM
is faster than other models while worse in quality. Also we observe
that LAM slows down when m reaches 13 or higher. It urges us
to choose a trade-off m = 7.

In order to explain the reason that LAM outperforms all other
three models, We conduct the next set of experiments to further
illustrate the high accuracy of LAM prediction performance by
comparing the distribution of actual service time in original log
data and the prediction by LAM on four employee-activity pairs.
Figure 4 shows the results. We observe that the quality of LAM
prediction on the probability distribution of service time closely
approximates the actual distribution in the original log dataset.

In the next sets of experiments, we compare the four ap-
proaches in terms of the accuracy and efficiency on six indepen-
dent datasets, namely SC, XH, GS, BJ, ZJ and HZ. Due to the
space limit, we omit XH and ZJ in this paper as they are similar to
GS. Fig. 5 measures the log likelihood by varying m. We observe
that (1) LAM has the highest log likelihood as m increases for all
six log datasets; (2) LDA+SVR, LDA+GLM and AVG+CF have a
similar log likelihood independent of m; and (3) the log likelihood
increases with m. Given that a larger m requires more time spent
in training phase, thus we can trade-off accuracy and efficiency
by finding local optimal setting of m. Fig. 5 shows that all six
datasets exhibit a stable log likelihood when m is around 7 or 8.
Thus, the default setting of m is 7.

We also measure the log likelihood on six datasets by varying
the density percentage of training dataset. Figure 6 shows the
results. We observe that LAM consistently delivers high accuracy
even when the density of training dataset is as low as 10%. The

performance of LAM is dis-sensitive to the data density which
means it does not facing the cold-start challenge. Also, we can see
that in big dataset, BJ and HZ in (c) and (d), the accuracy gap
between LAM with other models is quite big. One reason that the
other three models perform poorly for BJ and HZ datasets is the
low ratio of their recorded employee-activity pairs in the log over
all possible pairs.

Recall Table 3, the column “Percentage of Recorded Activity
and Employee Pair” shows that for both in BJ and ZJ, the ratio
of the employee-activity pairs in the log dataset over is the
smallest (0.23%) among all datasets. Such low ratio indicates the
serious sparseness in the log dataset, resulting in log likelihood for
LDA+SVR, LDA+GLM, AVG+CF, worse than LAM.

Next, we measure the execution time of all four approaches on
the six datasets by varying m. Figure 7 shows the result. In small
datasets, SC and GS, in (a) and (b), LDA+SVR and LDA+GLM
take the least execution time. In big datasets, BJ and HZ, see (c)
and (d), LAM is more faster than LDA+SVR. Figure 8 shows the
running time with varying training set density. LAM and AVG+CF
have the shortest execution time consistently for big datasets, e.g.
BJ and HZ, when the dataset density is 30% or higher.

Finally, we measure the execution time and accuracy on
different contexts. Two biggest datasets, BJ and HZ are used in
this experiment. We removed the original dataset by involving only
a few employee number. For example, an 100-employee context
of BJ means 100 employees from BJ are randomly extracted.
Also, the activities retained are those participated by the randomly
selected 100 employees. The training set and testing set are ran-
domly divided by 7:3. The experimental results are reported in Fig.
9. In (a) and (c), we can see that the execution time of all models is
increasing as the context size (number of employees per context)
increases. This is because the larger context means more data
records to process. In (b) and (d), we observe that the accuracy
is decreasing for all methods as the context size increases. This is
because more employees are involved in the model training and
testing, thus more diversity, and the accuracy measure Lg takes
the sum of log likelihood of all records. Regarding the execution
time, LAM grows much slower than LDA+SVR and AVG+CF as
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the context size increases, and LDA+GLM shows slightly shorter
execution time than LAM as the context size grows at the cost
of lower in accuracy than LAM. This set of experiments further
shows that LAM is more effective than the existing methods,
especially in large and complex contexts.

6.4 Employee Ability Comparison

The employee ability comparison should consider two typical
scenarios: (1) An employee has had higher score in all m ability
groups than another. Thus, for the set of common activities that
they both have participated, the former employee should have
better performance than the latter for all activities. (2) For any
two employees, each of the two has had higher score in at
least one of the m ability groups. In this case, among the set
of common activities, we can always find one activity that the
former employee does better and find another activity that the
latter employee performs better.

For each employee, we obtain the ability scores for all m
ability components, denote by E, which can be obtained by
Eq. 27. Figure 10 evaluates the effectiveness of LAM for employee
ability comparison by considering the first scenario, i.e., the ability
comparison on two employees: E413 and E1885. Figure 10 (a)
shows that employee E413 has higher ability score than employee
E1885 for all m ability groups (m = 7). The black color dashed
polygon shows the 7 ability scores of employee E413 with respect
to the 7 ability groups, which are around 0.5, much higher than the
7 ability scores of employee E1885, whose ability scores are lower
than 0.25 as shown in red color solid polygon. Next, we sample
two activities A775 and A258 from the log dataset, in which both
employees E413 and E1885 have participated for a number of
times. Figure 10 (b) illustrates the service time comparison of
employees E413 and E1885 on activity A775. We observe that
employee E413 takes significantly less time and thus is more
effective than employee E1885. This result is consistent with
the employee ability score comparison in Figure 10 (a). Fig. 10
(c) shows the ability comparison of the same pair of employees
on activity A258. Again we observe that employee E413 takes
shorter service time than employee E1885, consistent with the
fact that employee E413 has higher ability scores than employee
E1885 on activity A258. Fig. 10 (d) shows the activity required
ability comparison. We observe that activities A775 and A258
have different ability scores for m = 7 ability groups.

Figure 11 illustrates the second scenario. From Figure 11 (a),
employee E1254 has higher score in ability 2 and ability 5 but
lower score in ability 3 and 4, compared to employee E2426.
We sample two activities, A941 and A27, from the log dataset,
in which both employees E1254 and E2426 have participated
for several times and have different service times. Fig. 11 (b)
and (c) show the service time on activity A941 and activity
A27 respectively. We observe that employee E1254 has shorter
service time on activity A941 but longer service time on activity
A27, comparing with employee E2426. This is consistent with
the employee ability scores shown in Fig. 11 (a) and the activity
required ability scores shown in Fig. 11 (d).

6.5 Employee-Activity Matchup Prediction

We want to evaluate the effectiveness of our model in predicting
how well the employee’s provided ability set matches up with
the activity’s required ability set for any given pair of employee
and activity. Recall Section 5, we have defined the matchup score

(i)

(iii)

(iv)

(ii)

(a) The grid color graph of match-
ing score on first 40 activities and
40 employees.
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Fig. 12: Matching score and candidate activity

Si,j in Equation 28 for employee i and activity j, which uses
βa,βe,θa,θe.

Figure 12 (a) shows the matching score Si,j on 40 activities
and 40 employees. The color of the grid represents the matching
score and the x-axis represents activity id and y-axis represents
employee id. The lighter color denotes the higher matching score.
We arrange the 40 employees by their highest provided ability
scores on the 40 activities. Then we arrange the 40 activities by
the highest required ability score on the 40 employees. We observe
that for most of the employees, the color varies with different
activities. Thus, we sort both the set of employees and the set of
activities such that the right-top portion of Fig. 12 (a) is light color
and left-bottom portion is dark. We obtain the following intuitions.

First, Some employees have either consistently high matchup
scores on many activities, or have very different matchup scores on
different activities, such as those marked (i) and (ii) in Fig. 12 (a).
Specifically, matchup scores of employees in the group marked
by (i) are varying significantly with respect to the 40 activities.
It means that employees in the region marked (i) are relatively
more flexible and can work effectively for most of the activities.
In comparison, most matchup scores of employees in the region
marked by (ii) are relatively lower compared to those in group
(i) for most of the 40 activities. It means that the employees in
the group (ii) is suitable for only a few activities out of the 40
activities in comparison.

Second, a few employees have very similar scores on most of
the activities, such as employees in group (iii) and group (iv) in
Fig. 12 (a), with employees in group (iv) have the darkest color
and thus lowest matchup scores on all 40 activities. It means that
employees in group (iv) performs poorly in comparison to the
others in the set of 40 employees.

Recall Section 5.3, we introduce the concept of candidate
activity groupG(i) with threshold δ:G(i) = {j|Si,j ≥ δ}. Given
an employee i, G(j) finds the set of activities with the matchup
score Si,j larger than the system-defined threshold δ. In the next
set of experiments, we vary the threshold δ and measure the size
of G(i), the number of activities with matchup score higher than
the threshold, on the four employees used in experimental case
studies: E1254, E2426, E1885 and E413. Figure 12 (b) shows
the results. We make several interesting observations. First, as
δ increases, different employees show different decreasing rate
with respect to the size of their candidate activity group. Also
this deceasing rate is tightly related to their ability scores. Recall
that employee E1885 has the lowest average score, which is below
0.25, compared to the others, especially employee E413. Thus, the
curve of employee E1885 is sharply declined, indicating that the
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TABLE 5: First 3 match up activities

EmployeeID Name TopActivity1 (ID) Score TopActivity2 (ID) Score TopActivity3 (ID) Score Shortest Service
Time Activity

E413 X. C. Final Review on
Affordable Housing
Department (A621)

1.870 Applying Agreement
from Internet (A561)

1.868 Acceptance Checking
(A259)

1.861 A775

E1885 Q. W. Applying Agreement
from Internet (A561)

1.637 Acceptance Checking
(A259)

1.637 Acceptance Checking on
Consulting File (A941)

1.625 A258

E1254 M. Z. Acceptance on Consulting
File (A941)

1.585 Acceptance Checking
(A259)

1.584 Applying Agreement
from Internet (A561)

1.583 A941

E2426 Y. Y. Acceptance Checking
(A259)

1.619 Applying Agreement
from Internet (A561)

1.618 Acceptance Checking on
Consulting File (A941)

1.611 A941

size of his/her candidate activity group reduces the fastest, as the
threshold δ increases. It approaches 0 when δ is set to 1.5, which
implies that no activity is suitable when δ ≥ 1.5. In comparison,
other three employees can still matchup much more activities (400
or higher).

Table 5 lists the most appropriate three activities for the four
employees in our experimental case studies. We rank the activities
for each employee by the matchup score and show the top-3 for
each employee. We can see that for employee E1254 and E2426,
the shortest-time activity hit in the top-3 results. It means that
our matchup score is really close to reality. While for employee
E413 and E1885, the shortest-time activities do not appear in top-
3 results. By checking the data, we found that there is no any
records about the employees on our top-3 activities. Therefore we
can recommend these three activities to them.

7 RELATED WORKS

Workforce analytics has received attentions from three research
areas: (a) human efficiency, (b) operator allocation and (c) e-
Government.

Human efficiency. This line of research focuses on finding out
the factors that influence human efficiency with some well-known
work. Hockey [8] studied the noise, which produces a narrowing
of attention. [20] emphasizes the importance of delegation in
enhancing the work efficiency. Paarlberg [9] introduced the impact
of customer orientation on government employee performance.
Elena et. al. [5] developed the schematic scientifically grounded
criteria to evaluate the effectiveness of the employees. [21] dis-
cussed the Employee Participation in Profit and Ownership. These
existing approaches, however, lack of either quantitative analysis
or experimental proof. They are pre-defined and subjective in
nature. In comparison, our LAM approach iteratively learn the
latent factors qualitatively and the results of our model is provable
on practical datasets.

Operator Allocation. This line of research centers on the
problem of operator allocation or assignment to employees. The
ultimate goal of finding out the optimal operator allocation plan
to improve efficiency and increase productivity of both employees
and organization as a collection of employees. The early work
[22] solves the problem using single criterion by mixed integer
programming (MIP). Then, [12] consider the operator alloca-
tion on multi-dimensions by introducing the skill category, each
denotes one of possible skill combinations and different work
requires different operation skills. [11] proposed seven manually
defined ability criteria: quality, planning, initiative, teamwork,
communication and external factors. [13] reviews the literature
on the multiple ability criteria decision in recent two decades. All
these existing efforts to date define and model workers’ ability
skills manually and the ability score is defined subjectively. In

contrast, LAM infers the ability set B from the real employee-
activity log data automatically and provides employee ability
scores statistically.

E-Government. The research on e-Government [23][24] em-
ploys information technology to public administrations. [25]
shows that efficiency improvement is one of the major challenges
for e-Government. Virile [26] studied the e-Government plan in
Italy and emphasized the attention on efficiency. Liang [27] pro-
posed the models and selection strategies to promote the efficiency
of e-Government by Cloud computing techniques. This line of
works emphasize the importance of efficiency in e-Government.
However, their focus is primarily on the efficiency of computing
instead of employees. The techniques proposed ignore the delays
brought by the human factors in measuring workforce efficiency.
Our model predicts the distribution of service time from the
employee-activity log by extracting the latent ability variables
to unify the ability set required by activities and the ability set
provided by employees in performing their assigned activities.

8 CONCLUSION

We have presented a generative probabilistic inference and pre-
diction framework, Latent Ability Model (LAM). Using LAM, we
map employee and activity to a unified latent ability space, and
for a vector of abstract abilities, we represent an employee by
his/her ability vector and an activity by its requirement on the set
of abilities. Then we employ LAM based unsupervised learning on
this employ-activity latent space initialized by service time. LAM
model enhances the existing unsupervised prediction approaches
from two novel perspectives: (1) Based the linear relationships and
observations from the EA service time datasets, LAM explores
the latent relationships between employee and activities through
service time and extract interesting structural patterns from the
random and skewed data. (2) LAM derives the prediction model
based on both semantic and linear correlation features and the
hidden and complex latent correlation features extracted from
the real datasets provided by the Hangzhou City government in
China. Our extensive experimental results show that LAM ap-
proach significantly outperforms existing representative prediction
methods in both accuracy and efficiency. We are currently working
on extending LAM to handle more complex datasets with more
attributes in workforce data analysis. Furthermore, to incorporate
new data records, we need to retrain LAM model. We are also
interested in exploring incremental approaches to construct and
update the LAM model.
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APPENDIX: DEDUCTION AND PROOF

In this section, we show some important deductions in LAM. At
first, recall that we calculate the posterior to get train parameters.
According to the MAP, the posterior Eq. 12 is derived by Bayesian
rules. The key idea is to represent the posterior by the prior
distributions Q(θa|α), Q(θe|α), and conditional distributions
P (ai|za,βa), P (ei|ze,βe), P (za|θa) and P (ze|θe)). Note that
the prior distributions and conditional distributions have been
well defined in generative model. Therefore, we replace them by
their definitions. In this way, we get a simple presentation of the
posterior.

L =P (Θ|L)

=

n∏
i=1

P (Θ|ai, ei, si)

=

n∏
i=1

P (θa,θe,βa,βe, ca, ce, ω|ai, ei, si)

=Z

n∏
i=1

P (ai, ei, si|θa,θe,βa,βe, ca, ce, ω)Q(θa|α)Q(θe|α)

=Z

n∏
i=1

(

m∑
za=1

m∑
ze=1

P (si|θa,θe, za, ze, ca, ce, ω)

P (ai|za,βa)P (ei|ze,βe)P (za|θa)
P (ze|θe))Q(θa|α)Q(θe|α)

=Z

n∏
i=1

m∑
j=1

m∑
k=1

φ(si;λi,j,k)βa{j,ai}

βe{k,ei}θa{j}θe{k}
1

B(α)

m∏
i′=1

(θa{i′}θe{i′})
α−1

=Z

n∏
i=1

m∑
j=1

m∑
k=1

τi,j,kφ(si;λi,j,k)

(30)
Besides posterior, another important formula is the conditional

expectation, namely Eq. 14, which is the objective to maximized
in EM algorithm. Recall that, in EM, we need to re-calculate the
parameters Θ according to the parameters in last iteration Θ(t). In
following deduction, we introduce two temporal variable U and
V for simplification.

Q(Θ|Θ(t))

=EU,V |L,Θ(t) [logP (Θ|L,U ,V )]

=EU,V |L,Θ(t) [log

n∏
i=1

P (Θ|ai, ei, si, ui, vi)]

=EU,V |L,Θ(t) [

n∑
i=1

logP (Θ|ai, ei, si, ui, vi)]

=

n∑
i=1

EU,V |L,Θ(t) [logP (Θ|ai, ei, si, ui, vi)]

=

n∑
i=1

m∑
j=1

m∑
k=1

P (ui = j, vi = k|ai, ei, si;Θ(t))

logP (Θ|ai, ei, si, ui, vi)

=

n∑
i=1

m∑
j=1

m∑
k=1

T
(t)
i,j,k log(τi,j,kφ(si;λi,j,k))

(31)

Given the learned features Θ, we’d like to predict the proba-
bility P (s′|a′, e′) namely an employee e′ can finish an activity a′

on service time s′. Note that P (s′|a′, e′) means the probability of
service time equaling to s′. In practice, we use Eq. 26 to calculate

the probability that service time not larger than s′. Here, we
present the basic deduction on P (s′|a′, e′) based on the Bayesian
rule.

P (s′|a′, e′)

=

m∑
za=1

m∑
ze=1

P (s′|za, ze, a′, e′)P (za|a′)P (ze|e′)

=Zp

m∑
za=1

m∑
ze=1

P (s′|za, ze, a′, e′)P (a′|za)Q(za)P (e′|ze)Q(ze)

=Zp

m∑
za=1

m∑
ze=1

φ(s′;λi,za,ze)βa{za,a′}θa{za}βe{ze,e′}θe{ze}

(32)
Recall that we mention that we can use the features, namely

the employees’ abilities and the activities’ requirement to estimate
how goodness an employee fitting an activity. Here we introduce
the formalization of the matchup score Si,j , on activity i with
employee j. The intuitively understanding is that we calculate the
probability that employee j have all abilities z = {1...m} that
required by i.

Si,j

=

m∑
z

P (z|i)P (z|j)

=

m∑
z

P (i|z)P (z|θa)P (j|z)P (z|θe)

=Zz

m∑
z

βa{z,i}βe{z,j}θa{z}θe{z}

(33)

Here Zz is a constant for normalization. We can see that Si,j is
larger if the probability that employee j have all abilities z =
{1...m} that required by i, is larger. In other words, the larger
matchup score Si,j denotes that j is fitting activity i.


