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Abstract—Convolutional Neural Network (CNN) has gained attractions in image analytics and speech recognition in recent years.
However, employing CNN for classification of graphs remains to be challenging. This paper presents the Ngram graph-block based
convolutional neural network model for classification of graphs. Our Ngram deep learning framework consists of three novel
components. First, we introduce the concept of n-gram block to transform each raw graph object into a sequence of n-gram blocks
connected through overlapping regions. Second, we introduce a diagonal convolution step to extract local patterns and connectivity
features hidden in these n-gram blocks by performing n-gram normalization. Finally, we develop deeper global patterns based on the
local patterns and the ways that they respond to overlapping regions by building a n-gram deep learning model using convolutional
neural network. We evaluate the effectiveness of our approach by comparing it with the existing state of art methods using five real
graph repositories from bioinformatics and social networks domains. Our results show that the Ngram approach outperforms existing
methods with high accuracy and comparable performance.

Index Terms—Classification of Graphs, Convolutional Neural Network, N-gram modeling, Subgraph Pattern Extraction
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1 INTRODUCTION

Many complex problems in business, science and engineering
can be formulated as graph problems and solved by using graph
analytic algorithms. The problem of classification of graphs treats
graphs as complex objects and constructs deep learning models
to learn classification of graphs based on common substructure
patterns hidden in those graphs. For example, MUTAG dataset
consists of many nitro compounds where class labels can indicate
whether the compound has a mutagenic effect on a bacterium [1].
Another example is mapping unseen compounds to their level of
activity against cancer cells [2].

Conventional approaches to classification of complex objects,
such as protein structures, social graphs, images, rely on designing
adequate similarity function(s) to measure the similarity distance
between two complex objects and then use the off-the-shelf clas-
sification algorithms [3]. Based on graph-similarity computation
models, existing approaches to classification of graphs can be
broadly classified into two categories. (1) The local subgraph
based approaches compare graphs based on the existence or count
of small substructures [4][5][6][7]. The main challenge is to iden-
tify the significant subgraph structures as the signature features
for classification of arbitrary graphs in the training set [4][5].
Then by representing each graph as a feature vector with each
element denoting the weight on the respective subgraph structure,
existing off-the-shelf machine learning algorithms can be applied.
A main problem with using such subgraph structures as signatures
is the restriction of using very small subgraphs with a few nodes
(window size of < 10 nodes) due to the combinatorial complexity
of subgraph enumeration for large window size. Consequently,
these approaches fail to capture the complex structure patterns
of graphs. This limitation can lead to high error ratio due to
missing of the subgraph patterns that are critical to classification
but cannot be captured by using the small window size. (2)
The global similarity-based approaches compute the pairwise
similarity (distance) of graphs [8][9][10][8], typically by first
encoding the subgraph features and then creating the distance
matrix to record pairwise similarity for every pair of graphs, before

employing the off-the-shelf supervised learning algorithms, e.g.,
kNN and SVM, on the distance matrix. Graph kernel [8] and graph
embedding [11] are the two most recent representative methods in
this category. Deep Graph Kernel (DGK) [8] is the state-of-art
approach in graph kernel family. The key idea is to leverage the
dependency information between substructures by learning their
latent representations. Their framework, especially when using
Weiseiler-Lehman kernel [12], achieves some competitive result
on open benchmarks. Therefore, the DGK approach is one of the
popular methods used for experimental comparison in terms of
efficiency and effectiveness in literature [11], [13], [14].

However, existing approaches in both categories suffer from
some serious drawbacks. First, comparing to classification of
text, image, video and scene datasets, feature extractions for
graphs pose some unique challenges. Graphs consist of two types
of primitive elements: vertices and edges. Analyzing graphs as
whole objects requires capturing not only the shallow features
from explicit topological structure of a graph but also the deep
features from the implicit (hidden) correlation structures at both
vertex and edge level. Thus, it is hard to represent graphs in
a deterministic feature space [7]. Second, capturing the implicit
structural correlation patterns is critical for high quality classifi-
cation of graphs. Neither small and fixed size of subgraph pattern
matching (local) nor pairwise similarity of graphs (global) are
sufficient for capturing the complex hidden correlation patterns
for classification of graphs that have different size and different
structural complexity.

To address the above challenges, we develop n-gram graph-
block based convolutional neural network (CNN) for deep learning
of graphs. The NgramCNN approach allows us to capture complex
patterns of graphs with small-size substructure filters by lever-
aging multiple convolution layers and feed-forwarding iterative
composition of simple patterns. Our NgramCNN approach is
novel in three aspects: First, we introduce the concept of n-gram
blocks to transform each raw graph into a sequence of n-gram
blocks connected through overlapping regions. By leveraging the
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overlapping n-gram blocks based approach, we can effectively
encode the complex structural correlation patterns over the collec-
tion of graphs in different sizes and different topology complex-
ity. Second, we introduce the concept of diagonal convolution
with n-gram normalization to extract interesting local patterns
and connectivity features hidden in these n-gram blocks. By
leveraging n-gram normalization and diagonal convolution as the
optimized initialization step, our approach allows early pruning of
those blocks that contain no edge connectivity between any pair of
vertices in a graph and thus do not contribute to the classification
of the given collection of graphs. Third, we conduct deep learning
of global substructure patterns through a sequence of convolu-
tional layers by leveraging local patterns and iteratively refined
weight filters. To the best of our knowledge, this work is the first
to develop a deep learning framework using Ngram graph blocks
based diagonal CNN for classification of graphs. We compare our
approach with the existing state of art graph classification methods
using five real-world graph datasets from bioinformatics and social
networks domains. Our experimental results show that the Ngram
approach outperforms existing methods with high accuracy and
comparable performance.

The rest of this paper is organized as follows. Section 2 briefly
reviews the related work. Section 3 introduces Ngram diagonal
CNN model and its deep learning framework. Section 4 reports
our experimental evaluation and Section 5 concludes the paper.

2 RELATED WORK AND OVERVIEW

Convolutional neural network (CNN) [15] is a type of artificial
neural networks (ANNs), widely used in many science and busi-
ness domains for image recognition, speech recognition, drug
discovery, protein structure mining, complex manufacturing an-
alytics, and computer-assisted game play (e.g., Google Alphago).

A CNN consists of a sequence of stacked convolutional layers,
and every layer transforms one volume of activations to another
through a differentiable function. Each layer is made up of a set
of neurons that have learnable weights and biases. Each neuron is
fully connected to all neurons in the previous layer. Neurons in a
single layer function independently and do not share any connec-
tions. The last fully-connected layer is called the “output layer”
and it represents the class scores. Typically, a CNN architecture
consists of input and three main types of layers: Convolutional
Layer, Pooling Layer, and Fully-Connected Layer [16]. In the
context of image recognition, the input of 32 × 32 × 3 will
hold the raw pixel values of an image of width 32, height 32,
and with three color channels R, G, B. A convolution layer will
compute the output of neurons that are connected to local regions
in the input by performing a dot product between their weights
and a small region they are connected to in the input volume,
and each neuron learns by optionally following it with a non-
linearity tuned at each iteration through gradient descent based
refinement of weights and biases. Through these neurons, a CNN
transforms an original image layer by layer from the original pixel
values to the final class scores. Some layers contain parameters
and other do not. Convolution layer and fully connected layer
perform transformations that are a function of both the activations
in the input volume, and the parameters (the weights and biases of
the neurons) that are refined in each iteration of the deep learning
process. These parameters will be trained with gradient descent
iteratively so that the class scores that the CNN computes are
consistent with the labels in the training set for each image.

CNN has had some noticeable success in deep learning over
sequential data, e.g., text [17], image and grid data [18], video and
stream data [19] as well as large scale Scene analysis [20]. Recent
work extends the baseline CNNs to classification of graphs. [21]
addresses the window size issue by constructing a deep CNN that
can capture more complex graph patterns through adding multiple
convolution layers.[22] employs convolutional type operations
on graphs to develop a differentiable variant for specific graph
feature in the context of molecular fingerprints. Mikael et. al
[23] extends spectral networks by employing graph estimation for
better classification on text categorization, computational biology
and computer version. [24] introduces Graph LSTM (Long Short-
Term Memory) as the generalization from sequential data to graph
structured data. [13] is the first to apply CNN to classification
of graph objects in a graph repository. PSCN encodes nodes
by the neighborhood nodes within the system-default window
size k, and then applies a standard 1-Dimension convolutional
neural network. PSCN achieves better results on the open datasets
comparing with the Deep Graph Kernel [8]. However, it still
suffers from some drawbacks. First, the selection of neighborhood
is determined by the window-size k, which is less than 10,
because a larger window-size k will result in unacceptable running
time and memory usage. Second, PSCN cannot perform deep
learning effectively with the small window size k because they
lose the complex subgraph features when some input graphs in the
repository have the dense connectivity features that are beyond the
pre-defined system default window size. Third, the classification
results of PSCN are sensitive to the labeling approach, in which the
nodes in neighborhood are ranked, since their labeling approach
works on one dataset and may fail on another.

To tackle the problems of PSCN, we design and implement
an unified NgramCNN framework for classification of graphs
with high accuracy. Our NgramCNN is scalable to various graph
datasets with graphs of varying sizes and complexity, and it
outperforms PSCN and Deep Graph kernel in terms of accuracy
by careful integration of four optimizations: the n-gram vertex
blocks of equal size, the n-gram normalization, the diagonal con-
volution layer, and the extraction of complex subgraph structures
by stacking subsequent convolution layers on top of our diagonal
convolution layer. A unique characteristics of our NgramCNN,
comparing with these existing approaches, is the design of a
graph specific convolutional neural network structure for focused
learning of complex and deep subgraph patterns. For example,
we normalize each graph by capturing the local connectivity
through vertex (node) ID ordering. This approach has two key
challenges: determine the sequence of nodes from which to create
neighborhood substructure and define a unique mapping to trans-
form a graph from graph representation to vector representation
such that nodes with similar structural roles in the neighborhood
substructures are positioned similarly in the vector representation.
In addition to introducing the n-gram vertex blocks to capture
local connectivity of complex graphs of different sizes through
small subgraph structure of fixed size, our NgramCNN offers

Fig. 1: Example graph and its adjacency matrix.
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Fig. 2: The architecture of deep Ngram convolutional neural network.

another advantage over existing methods. We introduce n-gram
normalization to construct the diagonal representation of input
graph to enable our NgramCNN start with a diagonal convolution
layer. In summary, by encoding graph specific properties into
the deep learning architecture, NgramCNN can make the forward
function more effectively focused on the important computations
and parameter tuning in the network, which contribute signifi-
cantly to the objective function of the classification of graphs
in the given collection. Our experimental evaluation shows that
our approach outperforms existing ones with high accuracy and
comparable performance.

Orthogonal to deep learning models for classification of a
repository of graphs, another thread of graph analytics research
has been centered on mining a big graph by treating each graph
as a dataset of heterogeneous vertices and edges. The graph
analysis objective is to label vertices and edges in the input
graph with a given set of class labels based on pairwise vertex
similarity computed using either a graph traversal model [25] or
a pairwise vertex attribute based similarity measure or a hybrid
approach [26].

3 LEARNING NGRAM CNN FOR GRAPHS

3.1 Concepts and Definitions
A graph G is defined by (V,E) where V is the set of vertices and
E ⊆ V ×V is the set of edges. ∀vi, vj ∈ V , if (vi, vj) ∈ E, then
(vi, vj) denotes an edge in E connecting vertex vi with vertex vj .
A graph G = (V,E) can be represented by an adjacency matrix
A of size |V |×|V |, whereAi,j = 1 if (vi, vj) ∈ E, andAi,j = 0
otherwise.

Figure 1 shows an example graph of six vertices and its
corresponding adjacency matrix of size 6 × 6. For an undirected
graph G = (V,E), if ∀(vi, vj) ∈ E, vi 6= vj , then G has no self-
edge and its adjacent matrix is a symmetrical matrix with value
“0” in its diagonal elements. A basic property of adjacency matrix
is that by switching two columns and corresponding rows of an
adjacency matrix, we get another adjacency matrix representing
the same graph.

Let R denote a collection of graphs, L denote the set of K
class labels (|L| = K) and CL(G) denote the class label for an
instance graph G ∈ R. The problem of classification of R is
defined as the graph labeling problem, which partitions R into a
disjoint partitioning with K class labels, satisfying that ∀G ∈ R,
∃l ∈ L such that CL(G) = l. When |L| = 2, we refer to the
classification problem as the binary classification of R.

Definition 1 (n-gram block) Let G = (V,E) denote a graph
with V = {vi|1 ≤ i ≤ |V |}, and A denote an adjacency matrix

of G with size |V | × |V |. A n-gram block of A is defined as a
square matrix block B of size n×n (2 ≤ n ≤ |V |), where VB =
{vi1 , vi2 , . . . , vin}, 1 ≤ iq ≤ |V |, Bip,iq = 1 if Aip,iq = 1 and
Bip,iq = 0 if Aip,iq = 0.

This definition states that a n-gram block in the adjacency matrix
A of G corresponds to a subgraph of G. Let SB = (VB , EB)
denote the subgraph SB , where VB ⊆ V , EB ⊆ VB × VB ⊆ E,
Bi,j = 1 if (vi, vj) ∈ EB and Bi,j = 0 otherwise. For example,
the matrix with shaded 3×3 blocks in Figure 1 shows an example
n-gram block (n = 3).

3.2 Ngram CNN Architecture

Figure 2 illustrates the architecture of our Ngram convolutional
neural network. An NgramCNN is a specific CNN for deep learn-
ing of graphs and is composed of the initial convolutional layer,
and a series of feed-forward deep convolutional layers, followed
by pooling layer and dropout layer before outputting by softmax.
The initial convolutional layer is defined by the basic convolution
fabric, which extracts common patterns found within local regions
of the input graph, which is represented by a 2D adjacency matrix.
Each convolutional layer employs a set of learnable weights, called
filters or kernels, and each filter is convolved across the width and
height of the input features, computing the inner product between
the entries of the filter and the input, and producing a 2D activation
map of that filter, shown as feature P i (1 ≤ i ≤ m). In each
convolutional layer, the CNN learns from two perspectives: (1)
The 2D activation map P i is used to learn the filters that activate
at some spatial position in the input and extract more complex
type of feature. (2) The output produced by the convolution layer
is obtained by stacking the activation maps for all filters along the
depth dimension. We can interpret each output entry as an output
of a neuron, which can learn over a small region in the input,
and by sharing learned feature parameters with other neurons in
the same activation map, more complex type of feature can be
captured and represented.

As shown in Figure 2, our NgramCNN architecture consisting
of three core components: (1) The n-gram normalization, which
sorts the nodes in the adjacency matrix of a graph and produces the
n-gram normalized adjacency matrix. (2) A special convolution
layer, called diagonal convolution, which extracts the common
subgraph patterns found within local regions of the input graph.
(3) A stacked deep convolution structure, which is built on top
of diagonal convolution and repeated by a series of convolution
layers and a pooling layer. Note that given a graph repository, we
need to create an adjacent matrix of size α × α initially, prior
to enter the two phases supervised learning model (training and
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testing). α is the largest size of all the vertex sets for all the graphs
in the given repository. In the subsequent sections, α and |V | are
used interchangeably when no confusion occurs.

3.3 n-gram Convolution Fabric

A graph can be represented by different adjacency matrices
according to different ways to order its vertex set. Given an adja-
cency matrix, those matrix cells filled with value of “1” represent
the connectivity between the vertices of the corresponding graph.
One way to sort the vertices of a graph is to ensure that most of
the pairwise connected vertices are close to one another. This is
the main idea behind the concept of n-gram normalization.

Definition 2 (n-gram normalization) Let G = (V,E) denote a
graph in the collection R, A denote an adjacency matrix of G
with size |V | × |V |, and S = {Bh|1 ≤ h ≤ |S|} denote the
collection of n-gram blocks extracted from A (|S| ≤ |V | × |V |).
The n-gram normalization of G is defined by a one-to-one vertex
to vertex ID mapping on the vertex set V , defined by Mn : V →
{1, ..., |V |} such that ∀(vi, vj) ∈ E, if B ∈ S and vi, vj ∈ VB ,
then |Mn(vi)−Mn(vj)|+ 1 ≤ n.

Intuitively, the vertex to vertex ID mapping function Mn is a sort
function on the vertex set V . There are a number of different ways
to sort the vertex set of a graph based on the semantic attributes
of vertices or the traversal orders of the graph. In this paper,
we consider a hybrid breath-first and depth-first traversal order,
aiming at preserving the locality property of the graph, such that
vertices within the same n-gram block are in close vicinity in G.
The n-gram normalization aims to find the set of n-gram blocks,
denoted by RB(G), in an adjacency matrix of G such that each
B ∈ RB(G) is of size n and all n vertices in B have their vertex
IDs sorted in an ascending order and the pairwise value difference
in their positions in the adjacency matrix is no larger than n.

Consider the example graph in Figure 1 with six vertices and
six edges. For ease of illustration, we use six letters a, b, c, d, e,
f to denote the six vertices. Assume the original node sequence is
abcdef , following the alphabetical order and six edges are (a, b),
(a, c), (b, e), (b, f), (e, f) and (e, d). The adjacency matrix of
the graph generated using the given vertex ID ordering is shown
in Figure 1, next to the graph.

Clearly, this vertex order fails to capture the structural locality
of the graph. This is because b, e and f form a dense subgraph
structure in the raw input graph G (a triangle shape), which is
an interesting subgraph structure in graph mining [27]. However,
their positions in the adjacency matrix of Figure 2(a) are 2, 5 and
6, which are not close to one another within 3-hop distance even
though they can be traversed within 3-hop distance in the original
graph. This motivates us to introduce the n-gram normalization,
which sorts the vertex set of G to ensure that the dense structures,
such as the subgraph with vertices b, e, f , can be captured by the
n-gram normalized adjacency matrix.

Consider the same example, the n-gram normalization with
n = 3 overG can be achieved by the following vertex ID mapping
M(c) = 1, M(a) = 2, M(b) = 3, M(f) = 4, M(e) = 5, and
M(d) = 6. This new vertex ID mapping sorts the vertex set in
the sequence of cabfed. The adjacency matrix corresponding to
cabfed is a 3-gram normalized matrix for this example graph
because for edges (a, b), (a, c), (b, f), (e, f) and (e, d), their
position difference is 1, and for edge (b, e), the position difference
between their sorted order is 5− 3 = 2.

From this example, we show that the new vertex ID mapping
helps to generate a 3-gram normalized adjacency matrix, which is
more compact than the adjacency matrix generated by following
the previous vertex ID ordering. We refer to this optimization
as the n-gram normalization and the adjacency matrix obtained
through the n-gram optimization as the n-gram normalized adja-
cency matrix. The n-gram normalized adjacency matrix typically
has elements of “0” in the diagonal line, the left-bottom corner
and the right-top corner of the matrix, and all the “1” elements are
positioned in a belt area around the diagonal line. We conjecture
that the n-gram normalization helps preserving the dense subgraph
structures and the spatial patterns in local regions of a graph.

3.4 Augmentation by Isomorphism

Another important property of n-gram normalization is that given
a raw graph G, there exists more than one way to order vertices of
a graph by their numerical vertex ID, and hence there exists more
than one n-gram normalized adjacency matrices. Furthermore, any
two n-gram normalized adjacency matrices constructed from the
same graph G are isomorphic.

Theorem 3.1 (Canonical Isomorphism) Let X and Y are the two
n-gram normalized matrices of a given graph G. X and Y are
canonically isomorphic with respect to graph structure of G.

Sketch of PROOF. According to category theory [28], a mor-
phism f : X → Y in a category is an isomorphism if it admits a
two-sided inverse, namely, there is another morphism g : Y → X
in that category such that gf = 1x and fg = 1y , where 1x and 1y
are the identity morphisms of X and Y, respectively. A canonical
isomorphism is a canonical map that is an isomorphism. Two
objects are said to be canonically isomorphic if there is a
canonical isomorphism between them. Given that X and Y are
the two n-gram normalized adjacency matrices from G, we can
define the morphism f : X → Y and the morphism g : X → Y
throughG and its n-gram normalization. Thus, there is a canonical
map between X and Y that arises naturally from the definition or
the construction of the two n-gram adjacency matrices X and Y .
We call the canonical map the structure map or structure morphism
because the map comes with the given graph structure ofG, which
is canonical for all n-gram normalized adjacency matrices of G.
QED.

Figure 3(a) shows two different 3-gram normalized adjacency
matrices for the same input graph on the left, both matrices
are constructed from the same raw graph G with six vertices
a, b, c, d, e, f . Each is constructed by following a different vertex
ordering, and the n-gram blocks are highlighted in the belt area.
The two different vertex ID orderings are acbefd and cabefd,
which result in two different 3-gram normalized adjacency matri-
ces respectively.

In Ngram CNN, we leverage this canonical isomorphism prop-
erty to produce different matrix representations of the same raw
graph objectG, each of which shows one alternative perspective of
graph G in the matrix format. These isomorphic versions of G are
used to augment the training set in the preprocessing stage of our
Ngram CNN deep learning process, with the goal of optimizing
the accuracy of our deep learning with Ngram CNN.

Augmentation of training datasets is a popular technique in
CNN based image recognition [15]. Different parameters are
used for augmenting training data with the goal of improving
accuracy by examining raw images from different angles through
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Fig. 3: (a)The strict n-gram normalized adjacency matrix with
n = 3 and a isomorphic variant. (b) The relaxed n-gram normalized
adjacency matrix with n = 3.

augmentation of raw input images as a preprocessing step prior to
CNN learning.

3.5 Normalization Optimization

A main advantage of n-gram normalization is to prune out those
left bottom and upper right cells that are filled by value of “0”
in the diagonal convolution layer as these cells do not contribute
significantly to the classification of graph G. Concretely, without
n-gram normalization, one would need to examine a total of
(|V | − n+ 1)2 n-gram blocks in each convolution layer for each
iteration. With n-gram normalization, one can reduce the total
number of n-gram blocks to be examined during deep learning
from (|V | −n+1)2 to the number of normalized n-gram blocks,
which is |V |−n+1. Consider our running example in Figure 1(a):
with n = 3, we obtain 4 (|V | − n + 1) 3-gram normalized
blocks, reducing the total number of 3-gram blocks to be examined
for deep learning from 16 (i.e., (|V | − n + 1)2) to 4, a 25%
cost reduction. The perfect n-gram normalization for a graph G
typically generates a n-gram normalized adjacency matrix such
that only the cells in the diagonal n-gram block defined belt area
have value “1” except the diagonal line and all the cells outside
the diagonal n-gram block defined belt area have value “0”.

However, given a repository of graphs and a system-defined
n for performing n-gram normalization on every graph in the
repository, it is possible that we may not be able to construct
the perfect n-gram normalization for every graph such that all
“1” elements in the adjacency matrix fall into the resulting n-
gram blocks in the n-gram diagonal belt area after applying the
n-gram normalization. Figure 3(b) shows an illustrative example.
For the raw graph on the left, a n-gram normalized adjacency
matrix is constructed on the right for n = 3. If the normalization
were to capture all the n-gram blocks containing “1” elements,
we would need to add another two n-gram blocks in addition to
the four grey-colored 3-gram blocks after the normalization. For
applications that have higher demand on runtime efficiency, one
can reduce the number of basic convolution fabrics generated by
using the relaxed n-gram normalization.

Definition 3 (Relaxed n-gram normalization) Let G = (V,E)
denote a graph in the collectionR, A denote an adjacency matrix
ofG, and S denote the set of n-gram blocks of A. Let P denote the
upper bound on the number of normalized n-gram blocks required
in the output of n-gram normalization. Let count(B) output the
number of “1” element in the n-gram block B. The relaxed n-
gram normalization with upper bound P is a one-to-one vertex-
to-vertex ID mapping Mn : V → {1, ..., |V |} such that the
following two conditions are met:

(i) ∃SP ⊆ S such that ∀B ∈ SP , ∀B′ ∈ S \ SP , count(B)≥
count(B′).

(ii) If B = (VB , EB) ∈ SP and vi, vj ∈ VB , then |Mn(vi) −
Mn(vj)|+ 1 ≤ n.

This definition introduces a relaxed normalization condition
such that only those n-gram blocks in SP needs to meet the
condition (ii) and SP contains the n-gram blocks that have
larger number of “1” elements, representing significant subgraph
structures in G, which are more densely connected. The relaxed
n-gram normalization helps the users of our NgramCNN system
to optimize the model performance with bounded accuracy by se-
lecting an optimal P and a small window size n when performing
deep learning of classification on a collection of graphs.

Figure 3(b) shows a relaxed 3-gram normalized adjacency
matrix for the example graph on the left. Note that two elements
of value “1” are omitted in the final result of the normalization.
Thus, for window size n = 3, the 3-gram relaxed normalization
enables us to only examine a total of four normalized 3-gram
blocks instead of a total of sixteen 3-gram blocks. If we choose
the window size n = 4 instead, then we need to examine a total of
three normalized 4-gram blocks, instead of a total of nine 4-gram
blocks ((|V |−n+1)2 = (6−4+1)2 = 9). One way to compare
the relaxed 3-gram normalized adjacency matrix with the 4-gram
normalized adjacency matrix is to measure (i) the number of cells
with value “1” outside the diagonal belt area and (ii) the number of
cells with value “0” inside the diagonal belt area. For example, the
number of cells with value “1” in the relaxed 3-gram normalized
adjacency matrix is two and the number of cells with value “0”
inside the diagonal 3-gram block belt area is four, as shown in
Figure 3(b). In comparison, by choosing window size n = 4, we
can obtain a perfect 4-gram normalization with no value “1” cells
outside the diagonal belt area. But the number of cells with value
“0” inside the diagonal 4-gram block belt area is eight.

This motivates us to define quantitative metrics that can guide
us to select the best n with respect to the effect of n-gram
normalization. Our experiments with real world datasets also show
that the best window size n varies from dataset to dataset and
larger n may not always deliver the high accuracy results for CNN
deep learning [29].

The first quantitative measure is the loss of a relaxed n-gram
normalization, which is defined by the number of cells with value
“1” outside the diagonal n-gram belt area. Formally, A denote
the n-gram normalized adjacency matrix of size |V | × |V |, and
let Ai,j denote the cell at the ith row and the jth column of A
(1 ≤ i, j ≤ |V |). The loss of a relaxed n-gram normalization,
denoted by Loss(A), is defined as follows:

LS(A, n) =

n∑
i=1

|V |∑
j=i+n

Ai,j +

|V |∑
i=n+1

i−n∑
j=1

Ai,j (1)

The second quantitative measure is the ratio of the cells with
value “0” in the diagonal n-gram block belt area, denoted by ZR.
It can be computed by counting the total number of cells in the
diagonal belt area, denoted by TC, and the total number of cells
with value “1” in the diagonal belt area, denoted by T1. The total
number of cells with value “0” in the diagonal belt area is the
difference between TC and T1. To calculate TC, we use Ci,j (1 ≤
i, j ≤ |V |) to denote the matrix of ones. Thus, the ratio ZR can
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be computed as follows:

TC(A, n) =

n∑
i=1

|V |−n+i−1∑
j=1

Ci,j +

|V |∑
i=n+1

|V |∑
j=i−n+1

Ci,j

T1(A, n) =

n∑
i=1

|V |−n+i−1∑
j=1

Ai,j +

|V |∑
i=n+1

|V |∑
j=i−n+1

Ai,j

ZR(A, n) =
TC × T1
TC

(2)

In our Ngram CNN deep learning system, we use these two
quantitative measures to facilitate the selection of the window size
n by sampling a small number of graphs randomly from a given
graph dataset. For each sample graph, we switch any two columns
and corresponding rows. If we get a lower loss measure after this
switching, we choose this switching. If we get an equal or higher
loss after switching, we give up the switching. When the loss
measure is zero, we compare the ZR measure and choose the low
ZR measure as the better switching. This column/row switching
process iterates and terminates when all possible column/row
switching is examined and we cannot get a lower loss and lower
ZR score.

3.6 Diagonal Convolution
There are several ways to optimize a CNN to improve deep
learning quality and efficiency. We introduce a special diagonal
convolution to optimize the first convolution layer by leveraging
the n-gram normalized adjacency matrix of input graph to capture
the substructure patterns and to perform some early pruning of
unnecessary computations. Before defining the diagonal convo-
lution, we briefly review the basic convolution operation in a
typical CNN through a simplified example. Figure 4(a) shows a
basic convolution operation on a 2 × 4 grid, which represents
a 2 × 4 feature space. The convolution filter (also called kernel
in literature), highlighted in red in Figure 4(a), is the major
component in the convolution operation. In this example, two
filters in grid size of 2 × 2 are used such that each filter has 4
weight parameters. For each filter, to apply it on the 2× 4 grid, it
needs to be applied for 3 times, each time it applies to a window
size of 2 × 2, following the arrow direction from left to right
sequentially. In each step, by applying the filter to one of the three
sliding windows of size 2× 2, the inner product between the filter
and the sequential 2×2 window in the filter position is calculated.
We get 2× 3 results.

To prevent the feature dimension reduction in the convolution
process, for this example, we want to ensure that the final result
has 2 × 4 features, instead of reducing to 2 × 3, a zero-padding
technique is widely used in CNN. As shown in Figure 4(a), extra
4 zeros are appended at the head and the tail of the sequential
grid data, marked with dash line, such that the filters also perform
the convolution on the expended data of size 2 × 6 and get the
result in size of 2 × 5. After calculating the inner produce, for
each element in the result part, an activation unit, e.g., sigmoid
function, is applied. It ensures that each element is in the domain
of [−1, 1]. This convolution is called sequential convolution,
which is widely used in natural language processing [17]. Other
type of convolution operation includes 2D convolution used in
image [18] and video processing [19], and tree-based convolution
in programming language processing [30]. However, these existing
convolution operations are not directly applicable to the graph
structures in a meaningful way.

Fig. 4: (a) Sequential convolution. (b) A subsequent convolution. (c)
Pooling.

Fig. 5: Diagonal Convolution.

This motivates us to introduce a new convolution operation
in our framework to handle graph data. Recall that the n-gram
normalization ensures that all the connection information captured
by elements of value “1” in the adjacency matrix is recorded
in the belt area around diagonal line, as shown by highlighted
regions in Figure 2(b). The key idea of diagonal convolution is
that we use a group of convolution filters in size of n × n to
feed-forward filtering by moving along the diagonal line of the n-
gram normalized adjacency matrix and at each step we perform
convolution operation on an n-gram normalized block of size
n× n.

Formally, consider the n-gram normalized adjacency matrix
An of size (|V | × |V |), we take a total of n0 ≥ 1 convolution
filters denoted by F 0,i, i ∈ {1, ..., n0} in size of (n × n), then
the diagonal feature of filter F 0,i at step j ∈ {1, ..., |V | − n} is

P 0
i,j = α(〈F 0,i,AN

[j:j+n,j:j+n]〉) = α(

n∑
p=1

n∑
q=1

F 0,i
p,qA

n
j+p,j+q) (3)

where α(·) is the activation unit function, e.g., sigmoid. There-
fore, The feature obtained from the diagonal convolution is in the
size of n0 × (|V | − n+ 1). In the subsequent discussion, we use
P0 to denotes the diagonal features {P 0

i,j} and use F0 to denote
the filter parameters {F 0,i}.

Figure 5 illustrates the meaning of diagonal convolution by
a graph of 10 nodes, namely |V | = 10. It is observed that the
graph has two rings of size six nodes, and two nodes are shared
by these two ring structures. To capture such a ring based graph
pattern, existing approaches usually require to have the window
size larger than 10 [6][7]. However, our n-gram CNN approach
can be effective even when the window size n is as small as six.
Consider the original graph on the top left in Figure 5, we sort
the nodes by the n-gram normalization with n = 6 and get the
order labeled graph on the top right. We use abcdefghi to denote
the sequence of sorted nodes. Then we take diagonal convolution
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with filters in size of 6× 6, namely n = 6. The filter can move by
|V |−n+1 = 10−6+1 = 5 steps. The five figures in the center
of Figure 5 shows how each of the five filters covers (captures) the
different patterns of the graph in each step. For example, in the first
step, the filter stops at An

[1:6,1:6] and it covers all the connections
between any pair of nodes marked by a, b, c, d, e, f . As shown in
step 1 of Figure 5, the filter highlighted by the dash line, covers the
ring consisting of nodes a, b, c, d, e, f . More interestingly, using
the diagonal convolution operation, different subgraph structures
(features) can be captured by the same filter. For instance, steps
1 and 5 capture the same graph structure: the six-node ring. At
the same time, steps 2,3 and 4 capture another same type of graph
structure: the six-node line.

3.7 Go Deeper by Stacked Convolution Layers
Given that the window size of n is not sufficient to capture all
substructure features for a graph of size larger than n, such as the
example graph of size 10, to capture more complex substructure
features beyond the window size of n, we introduce a deep
convolutional structure on top of the diagonal convolution layer.
Concretely, by taking the diagonal features P0 as input, we use a
sequential diagonal convolution to get the first deep feature P1.
Then by adding more sequential convolution layers repeatedly, we
can get deeper features P2,P3,...,Pm.

Figure 4(b) illustrates the detailed structure of how the multi-
ple convolution layers are connected with one another. The second
convolution layer takes the output from the first convolution
layer as its input and applies the two filters on it. This process
is repeatedly applied in the feed-forward deep feature learning
structure, as shown in Figure 2(b). Table 1 shows the configuration
setting in each convolution layer.

Note that for each convolution except diagonal convolution,
we need to set the height of the filters to be the number of filters
in the previous convolution layer. For example, for the convolution
layer 2, the filter size is n1×s2, which means that the filter height
is the same as the number of filters (n1) in the convolution layer
1. This ensures that in the deep feature learning structure, filters
in each layer can make the forward-move by one dimension.

Formally, for ith convolution layer, we take feature Pi−1 in
size of ni−1× (|V |−n+1) as input, extend it with zero-padding
(si − 1)/2 on the left and zero-padding (si − 1)/2 on the right
and get the P̂i−1 in size of ni−1× (|V |−n+si). Then we apply
ni filters F i in size of (ni−1 × si), and get the feature Pi. We
define the elements of Pi as follows:

P i
j,k = α(〈F i,j ,P̂ i−1

[1:ni−1,n:n+si−1]〉) (4)

3.8 Features in Stacked Convolution Layers
In stacked convolution layers, the filters, namely F i for i’th
convolution layer, represent the complex subgraph structures, de-
noted as Gi, composed from previous relatively simpler subgraph
structures. In this procedure, the derived filters, F̂ i are introduced,
representing the composed value in matrix. We provide an illus-
trative example in Fig. 6 to describe the features learned through
diagonal convolution and stacked convolution layers. Fig. 6 (a)
shows the raw input graph with 14 vertices connected into two
rings. Fig. 6 (b) shows the diagonal convolution filters and Fig.
6 (c) show the subgraph structure corresponding to each of the
two diagonal convolution filters. The filter values are selected as
0 or 1 to simplify the calculation. Fig. 6 (d) shows the diagonal

features computed via inner product with the filters in Fig. 6 (b).
The values are obtained by the convolution Formula 3 and the
cells surrounded by the dash line are zero-padding. The stacked
convolution filters are illustrated in Fig. 6 (e) and the derived
filters are shown in Fig. 6 (f). The values are also 0 or 1 for
simple calculation. Fig. 6 (g) is the subgraph structures for the
stack convolution. The features obtained after stack convolution
are presented in Fig. 6 (h).

For diagonal convolution, the filters are exactly the derived
filters because diagonal convolution layer is the first convolution
layer. Note that each cell in filters has domain from -1 to 1, we
can simply assign the cell whose value greater than 0 as 1, assign
the cell whose value smaller or equal 0 as 0, to obtain subgraph
structure directly. Fig. 6 (b) shows the diagonal convolution filter
and Fig. 6 (c) represents the simple subgraph structures extracted
from the diagonal convolution operations. We can see that one
subgraph is a six-node line and another is a six-node ring. Both
are the basic subgraph patterns (components) for the complex
structures.

For stacked convolution layers, we need to construct the
derived filters F̂ i for F i and draw the subgraph structure Gi from
F̂ i. Recall that F i contains ni filters, which are both in size of
ni−1× si. j’th row of F i represents the weights of F̂ i−1,j to F̂ i.
Let |F̂ i| denote the heights and widths of F̂ i. Formally,

F̂ i,j
[p,q] =


0 if |p− q| ≥ |F̂ i|orp = q∑p

k=q−F̂ i−1+1

∑ni−1
v=1 F i,jF̂ i−1,v

[p−k,q+1−k] else if q > p∑q

k=p−F̂ i−1+1

∑ni−1
v=1 F i,jF̂ i−1,v

[q−k,p+1−k] else if p > q

(5)
The intuitive understanding is to stack the derived filters F̂ i−1

in last layers along the diagonal direction with weights in F i as
shown in Fig. 6 (i). Consider the stacked two filters in Fig. 6
(e), the height of these filters should be equal to the number of
filters in previous convolution layer, namely diagonal convolution,
which is 2. The width of these two filters are 5, and each row
represents the contribution of a subgraph structure in the previous
(diagonal) convolution on the current complex subgraph structure.
The first subgraph structure is the six-node line with five-edge,
as shown in Fig. 6 (c). Therefore, the first row of the filter in
stacked convolution layer, shown in Fig. 6 (e), whose values are
“0”,“1”,“1”,“1”,“0”, denotes the contribution of the subgraph of
the six-node with five-edge to the derived filters given in Fig. 6
(f). Similarly, the second row of the filter in stacked convolution
layer, in Fig. 6 (e), whose values are “1”,“0”,“0”,“0”,“1”, denotes
the contribution of the subgraph of six-node ring to the derived
filters, given in Fig. 6 (f). Then we stack the derived filters in
Fig. 6 (i) from previous convolution layer and obtain the derived
filters in the current convolution layer shown in Fig. 6 (f). The two
subgraph structures obtained based on convolution operation with
derived filters in Fig. 6 (f) are given in Fig. 6 (g) by only drawing
the edge with weight larger than 0.

3.9 Pooling Layer
After going deeper through the m convolution layers with system
supplied parameter m , we obtain the deep feature set P0,..., Pm.
To integrate the extracted features, the pooling layer is employed.
The pooling operation, denoted as pool(·), is designed as a form
of non-linear down-sampling. Pooling is typically performed by
progressively reducing the number of parameters and thus the spa-
tial size of the feature representation, which helps to identify the
approximate location of one feature relative to the other features.
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TABLE 1: Ngram CNN configuration and feature size in each layer

Schema #Filter Filter size Zero-padding Feature size
Input |V | × |V |
Diagonal Convolution nf0 n× n 0 nf0 × (|V | − n+ 1)
Convolution Layer 1 nf1 nf0 × s1 s1 − 1 nf1 × (|V | − n+ 1)
Convolution Layer 2 nf2 nf1 × s2 s2 − 1 nf2 × (|V | − n+ 1)
Convolution Layer 3 nf3 nf2 × s3 s3 − 1 nf3 × (|V | − n+ 1)
... ... ... ... ...
Convolution layer m nfm nf(m−1) × sm sm − 1 nfm × (|V | − n+ 1)
Hidden Layer

∑
(nfi)

Output K

Fig. 6: (a)Example graph (b)Diagonal convolution filters (c)Corresponding subgraph structures (d)Diagonal features (e)Stacked convolution
filters (f)Derived filters (g)Corresponding subgraph, and (h) High level features

Fig. 7: The configuration of 5 convolution layers NgramCNN on
graph dataset whose max node number is 200.

The two popular types of pooling methods are max pooling and
average pooling. Max pooling takes the largest number from a set
of input parameters as the pooling result while average pooling
takes the average number from the input data. In our NgramCNN
approach, max pooling is used. We add the pooling layer for each
deep feature set Pi where i from 0 to m. For Pi whose size is
ni−1×(|V |−n+1), we take max-pooling on each row. Therefore
we get a vector of size ni−1×1. Note that for diagonal convolution
feature, n0 is exactly n.

The relation between stacked convolution layers and pooling
layers is illustrated in Figure 7, in which the arrow denotes the
data flow direction between layers, blue layers are convolution
layers, and green layers are pooling layers. This figure illustrates

the configuration of a NgramCNN with five convolution layers on
a graph dataset with the maximum graph size of 200 vertices. With
the initial adjacency matrix is 200 by 200 in size, The normalized
graphs, represented by the adjacency matrix, are taken as input for
the diagonal convolution layer, whose configuration is 50 × 7 ×
7/1+ (0, 0). It means 50 convolution filters with size 7× 7, with
stride as 1 and no zero padding (0,0). This layer sends its results
to a pooling layer, whose size is 1 × 194. In addition, the results
from diagonal convolution are also taken to the second convolution
layer whose configuration is 50× 50× 7/1 + (0, 2). It means 50
convolution filers whose size is 50 × 7 and stride is 1. The zero
padding is 0 on the first dimension and 2 on the second dimension.
After 5 convolution layers, the dense hidden layer summarizes all
of the pooling results and outputs the classification result after a
softmax activation.

Note that for a graph dataset with irregular sizes of graphs,
we need to find the window size n for this dataset in such
a way that this parameter n is not the worst choice for this
dataset. When we set n too small, it may result in many graphs
requiring to employ relaxed normalization, which means that more
connection structure information may get lost due to relaxed n-
gram normalization. Also small n may imply that the diagonal
convolution may over-fit, since less possible subgraph structure
features are being captured. Therefore, we set n according to the
maximum graph size, say |Vmax| instead of using the smallest
graph in the dataset. For the small graph, e.g., 2 nodes graph, we
append 0, make the graph size equal to |Vmax|, to ensure that
(a) the existing connecting information in the raw input graph
is maintained, (b) the appended 0 will not destroy or change
the original graph structures. A intuitive understanding of setting
the parameter n is to add several independent nodes which are
disconnected to the original graph. Clearly, difference datasets will
have different optimal n.
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3.10 Regularization and Output Layer

After several convolutional and max pooling layers, the high-level
reasoning can be done via fully connected layers. Neurons in a
fully connected layer have full connections to all activations in the
previous layer. These activations can be computed with a matrix
multiplication followed by a bias offset. The main parameters
used in this hidden dense layer are weight parameters Wh, bias
parameter bh and dropout with ratio γ. Dropout is a widely used
technique in neural network to prevent overfitting [31].

In the classification output layer, we perform multinomial
logistic regression through another full connection on weight
parameter Ws, bias parameter bs and softmax function. The
softmax function computes the probability distribution over the
vector x of class labels and the input to the function is the result
of K distinct linear functions, and the predicted probability for the
j’th class (j = 1, ,K) given the vector x:

Pr(y = j|x) = exj∑K
l exl

(6)

where K = |L|, L is the given set of class labels represented in a
vector format, denoted by x.

3.11 Training
The model is trained to minimize the cross-entropy cost:

C = −log
|R|∏
i=1

Pr(yi|Ai) (7)

where |R| is the total number of graphs in the training set R, Ai

denotes the adjacency matrix of the ith graph inR, yi denotes the
ith class label in x, and θ contains all the parameters optimized
by the Ngram CNN: θ = {F ;Wh; bh} F = F0,F1, ...,Fm are
the convolution filters, Wh and bh are the hidden layer weight
and bias. The parameters are optimized with stochastic gradient
descent (SGD). The back-propagation algorithm is employed to
compute the gradients. A number of speed up modifications to
SGD are proposed recently, including momentum [32], Ada-
grad [33] and Adadelta [34]. Comparing with SGD, Adagrad
scales the learning rate dynamically. Adadela uses the history
gradient and weight to speed up the convergence. Although we use
SGD in the first prototype implementation of our Ngram CNN, we
plan to optimize SGD by incorporating and extending Adagrad.

4 EXPERIMENTS

This section reports the evaluation results of our NgramCNN
method by comparing it with the state-of-the art approaches to
classification of graphs in terms of classification accuracy and time
complexity.

4.1 Datasets

Three bioinformatics datasets: MUTAG, PTC and PROTEINS are
used in our experimental evaluation. MUTAG is a dataset with 188
nitro compounds where classes indicate whether the compound
has a mutagenic effect on a bacterium [1]. PTC is a dataset of
344 chemical compounds that reports the carcinogenicity for male
and female rats [35]. PROTEINS is a collection of graphs, in
which nodes are secondary structure elements and edges indicate
neighborhood in the amino-acid sequence or in 3D space [36].

In addition, two social network datasets, IMDB-BINARY
and IMDB-MULTI, are also used in our experimental compari-
son. IMDB-BINARY is a movie collaboration dataset where ac-
tor/actress and genre information of different movies are collected
on IMDB [8]. For each graph, nodes represent actors/actress
and the edge connected between them if they appear in the
same movie. The collaboration network and ego-network for each
actor/actress are generated. The ego-network is labeled with that
the genre it belongs to. IMDB-MULTI is the multi-class version
since a movie can belong to several genres at the same time.
IMDB-BINARY is the binary class version which has the set of
ego-networks derived from Comedy, Romance and Sci-Fi genres.

4.2 Experiment Setup
We compared NgramCNN with three state-of-art approaches:
• Deep Graph Kernel (DGK) [8] achieves the best classification

accuracy over graph kernel approaches.
• PATCHY-SAN (PSCN) [13] applies CNN on graph classification

and is competitive with deep graph kernel.
• Multi-task Learning (MTL) [14] takes the high quality subgraph

feature for classification by learning the regularized multiple
tasks.

Our approach is implemented based on the neural network
framework Chainer (http://chainer.org) by Python 2.7. We ob-
tained MTL source code from the authors and compiled it by
MATLAB 2016a. We did not have the source code of DGK and
PSCN. The result of DGK and the result of PSCN are the highest
accuracy results reported in the literature. The execution time for
DGK and PSCN is taken from [13] with 64G RAM and a single
2.8 GHz CPU as the machine configuration of their experiments.
All experiments are executed on the same server with 32GB
memory, 2.4 GHz Intel CPU, and NVidia GeForce 970 GPU.

For NgramCNN, we compared the performance using 2 convo-
lution layers as the shallow configuration, denoted by NgramCNN-
L2, and deep configuration of 5 convolution layers, denoted by
NgramCNN-L5. We set a variable n for the n-gram normalization
from 3 to 17. Also the filter size si used at each convolution
layer is tuned from {3, 5, 7, 9, 11, 13, 15, 17, 19}. The number
of convolution filters is tuned from {20, 30, 40, 50, 60, 70, 80}
at each layer. The dropout ratio is set as 0.5 and max training
iteration limit is set as 200. 10-fold valification is employed with
training set and testing set are randomly divided in ratio of 7 : 3.

Given the test collection of graphs in size of N , each graph Gi

with class label yi and predicted class ŷi by classifier, the accuracy
measure is formalized as follows:

Accuracy =

∑N
i=1 δ(yi = ŷi)

N
(8)

where the indicator function δ(·) gets value “1” if the condition is
true, and gets value “0” otherwise.

4.3 Performance Comparison Results
We first report the experimental comparison of our approach with
three representative methods: DGK, PSCN and MTL. Table 2
shows the characteristics of the five datasets used in the experi-
ments and reports the average accuracy and the standard deviation
of the comparison results. All experiments were ran for ten times
in the same setting.

For dataset MUTAG, compared to the best result of PSCN
at 92.63%, NgramCNN-L5 (5 convolution layers) obtained the
accuracy of 94.99%, higher than PSCN. NgramCNN-L2 achieved
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TABLE 2: properties of the datasets and accuracy for NgramCNN and three exiting state of the art approaches

Datasets MUTAG PTC PROTEINS IMDB-BINARY IMDB-MULTI
Graph# 188 344 1113 1000 1500
Class# 2 2 2 2 3

Max.Node# 28 109 620 136 89
Avg.Node# 17.9 25.5 39.1 19.7 13.0

DGK 82.94± 2.68(5s) 59.17± 1.56(30s) 73.30± 0.82(143s) 66.96± 0.56 44.55± 0.52
PSCN 92.63± 4.21(3s) 60.00± 4.82(6s) 75.89± 2.76(30s) 71.00± 2.29 45.23± 2.84
MTL 82.81± 1.22(0.006s) 54.46± 1.45(0.045s) 59.74± 1.06(0.014s) 53.23± 1.23 33.52± 2.31

NgramCNN-L2 92.32± 4.10(0.01s) 62.50± 4.51(0.10s) 74.99± 2.13(0.39s) 63.43± 2.50 46.22± 1.15
NgramCNN-L5 94.99± 5.63(0.01s) 68.57± 1.72(0.08s) 75.96± 2.98(0.60s) 71.66± 2.71 50.66± 4.10

(a) Varying n on MUTAG (b) Varying filter width on MU-
TAG

(c) Varying filter number on MU-
TAG

(d) Varying convolution layer
number on MUTAG

Fig. 8: The accuracy and running time on MUTAG.

(a) Varying n on PTC (b) Varying filter width on PTC (c) Varying filter number on PTC (d) Varying convolution layer
number on PTC

Fig. 9: The accuracy and running time on PTC.

(a) Varying n on PROTEINS (b) Varying filter width on PRO-
TEINS

(c) Varying filter number on PRO-
TEINS

(d) Varying convolution layer
number on PROTEINS

Fig. 10: The accuracy and running time on PROTEINS.

the accuracy of 92.32%, very similar to PSCN. For PTC dataset,
DGK and PSCN obtained similar accuracy measure of around
60%. Our NgramCNN-L2 achieved 62.50% and NgramCNN-L5
achieved 64.99%, which is the best accuracy to date on this
dataset, with the best of our knowledge. For dataset PROTEINS,
NgramCNN-L5 achieved the highest accuracy of 75.96%, which
is slightly higher than the best result of 75.89% by PSCN. For
the two social network datasets, NgramCNN has a competitive
accuracy result of 71.66% for IMDB-BINARY, higher than the
best of PSCN at 71.00% and has achieved the highest accuracy of

50.66% for IMDB-MULTI, compared to the best of PSCN at 45%
and the best of DGK at 44%.

4.4 Parameters Selection
In this section we study the impact of parameter configuration on
the accuracy of the classification result and the time complexity
performance of NgramCNN. Concretely, we examine three four
configuration parameters in the NgramCNN framework:
Ngram window size parameter n.
This is the key parameter for determining how good our Ngram
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(a) Varying dropout ratio on Mu-
tag (b) Varying dropout ratio on PTC

Fig. 11: The accuracy and running time on different dropout rate.

(a) Accuracy with/without ngram (b) Time with/without ngram
Fig. 12: The accuracy and running time with/without ngram.

Fig. 13: convergence on MUTAG

Fig. 14: convergence on PTC

Fig. 15: convergence on Proteins

CNN model can cover the most significant subgraph patterns in the
given graph dataset. Because a small n may result in the fact that
most graphs would need to use the relaxed normalization to con-
struct their n-gram normalized adjacency matrices. Consequently,
we may loss more structural connectivity information, which can
be critical for classification of graph dataset. On the other hand, a
big n will lead to high computation cost due to large window-size
challenge as mentioned in the Related work. Figure 8 (a) shows the
accuracy and executing time of NgramCNN varying n on dataset
MUTAG. In this experiment, the number of convolution filters is
set to 50 for all experiments and the stacked convolution filter
width is set to 7. The accuracy and execution time are both the
average value in 10 runs with the same experimental setting. From

both Figure 8 (a), Figure 9 (a) and Figure 10 (a), we observe that
the accuracy is insensitive to the increase of n while the execution
time is more sensitive and grows significantly as the parameter n
increases from 3 to 11 for both MUTAG dataset and PTC dataset.
Thus, setting smaller n is more desirable.
Stacked Convolution Filter Width si.
Although different convolution layers can set different filter width,
in this set of experiments, we set the same width for all layers to
simply the discussion. Setting a larger width si means that each
filter can capture more complex subgraph structure features. Also
the complex subgraph structure features have higher possibility in
combination. However, it is also hard to determine the filter width
to cover all the possible combinations. In this experiment, we set
n = 7, filter number by 50 and vary filter width from 3 to 15.
Note that due to zero-padding, we can only use the filter with odd
value, namely 3,5,7,9,11,13,15. We also performed 10 runs for
each measurement collected under the same setting and take the
average value in accuracy and executing time. Figure 8 (b), Figure
9 (b) and Figure 10 (b) illustrate the results on MUTAG, PTC
and Proteins respectively. It shows that on MUTAG, the accuracy
grows as we increase filter width from 3 to 9 and become more
stable as we increase the filter width from 9 to 15. This indicates
that 9 is an approximately optimal setting of filter width because
the running time on 9 is smaller than that on the filter width of
9 and 15. Similar to MUTAG, PTC dataset shows that the best
setting of the filter width is 7, because setting filter width as 9,11
and 13 respectively gets similar accuracy but takes longer running
time compared to small filter width of 7. While in Proteins dataset,
namely Figure 10 (b), we can see that optimal filter width is 11.
Filter Number nfi
This parameter determines how many features are captured by
NgramCNN in each layer. Similar to filter width, we set the same
filter number for all convolution layers, including diagonal convo-
lution layer and stacked convolution layers. In this experiment, we
set n by 7, filter width by 7 and vary filter number from 20 to 80.
Each measurement is collected by 10 runs and the average value
of accuracy and running time are reported. Figure 8 (c) shows the
result on MUTAG and Figure 9 (c) shows the result of PTC. And
Figure 10 (c) shows the result in Proteins. We make an interesting
observation: a larger filter number, for example, 60 in Fig. 8 (c),
may result in much worse classification accuracy for both datasets.
This is because the more filters are used, the more weights need
to be trained. Thus, it is easier to get overfitted in training with
larger filter number.
Convolution Layer number
Like most deep neural network, the convolution layer number is
sensitive to the final classification accuracy, namely how deep
should the network set. As showed in Tab. 2, the NgramCNN-
L5, namely 5 convolution layer version can achieve a better
accuracy, comparing with NgramCNN-L2, namely 2 convolution
layer version. For better observing the efficiency and effectively
of our approach on different convolution layer number, we made
a group of experiment varying the convolution layer from 1 to
5 on MUTAG, PTC and Proteins. Figure 8 (d), Figure 9 (d)
and Figure 10 illustrate the accuracy and executing time of our
approach on MUTAG, PTC and Proteins, respectively. Note that
in this experiment, all other parameters are fixed as the default
value. n and filter width are set as 7, filter number is set as 50. An
interesting fact is that, without tuning other parameters, increasing
convolution layer number will not increase the accuracy explicitly.
In Figure 8 (d), the accuracy on 5-convolution layer is similar to 2-
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Fig. 16: (a) The positive graph structure, (b) The negative graph structure and (c) filter value.

Fig. 17: (a) The original graph, (b) Features on first convolution layer, (c) Features on second convolution layer, (d) Features on third
convolution layer, (e) Features on fourth convolution layer, (f) Features on fifth convolution layer.

convolution layer version. It is because without increasing the filter
number and filter width, the deeper convolution network cannot
take advantage of its capacity in representing more complex
features. In Figure 10 (d), the accuracy on 5-convolution layer
is even worse than 2-convolution layer version. It means that the
current parameter setting in n, filter width and number works
well on 2-convolution layer and limits the performance on 5-
convolution. Therefore, in this situation, we need enlarge the other
parameters for 5-convolution layer version on Proteins dataset.

Dropout Ratio
We have shown that increasing filter width, filter size and con-
volution layers may not improve the performance. The next set
of experiments is to study the impact of overfitting by varying
dropout ratios with batch normalization. Figure 11 shows the
results on MUTAG and PTC. The x-axis varies the dropout ratio,
the left y-axis measures the accuracy and the right y-axis measures
the running time. Figure 11(a) shows that the accuracy increases
when the dropout ratio is from 0 to 0.2 and the accuracy reduces
when the dropout ratio is from 0.2 to 0.9 for MUTAG. Figure 11(b)
shows the measurements for PTC: the accuracy is stable when
dropout ratio is from 0 to 0.4, increases when the dropout ratio is
from 0.4 to 0.5, and decreases slightly when the dropout ratio is
from 0.5 to 0.9. This set of experiments indicates that when the
dropout ratio is set to 0.2, NgramCNN get the best fit on MUTAG
and the optimal dropout ratio for PTC is 0.5.

4.5 Ngram

By introducing ngram in NgramCNN, we largely reduce the pa-
rameter number and calculating complexity in nerual network part.
To detailed report this contribution, we conduct the experiment by
comparing the naive CNN without ngram and our NgramCNN.
Specifically, in the approach without ngram, we apply the 2-
dimension convolution layer on adjacent matrix directly. There
are two major difference in impliment: 1. Without Ngram, the
diagonal convolution layer is replaced by a 2-dimension convolu-
tion layer. 2. Without Ngram, the pooling layers are 2-dimension
pooling. The configuration of the experiment is n = 7, filter
width as 7 and filter number as 50, for both NgramCNN and
naive version. The results are reported in Fig. 12b and 12a.
Figure 12a is the accuracy on these two approaches. We can
see that by introducing ngram, the accuracy gets higher. In Fig.
12b, the computing time of naive without ngram version is larger
than NgramCNN. It means that with ngram, convolutional nerual
network get a higher accuracy and lower running time.

4.6 Convergence

We report the convergence process of loss of both training set and
validation set on MUTAG, PTC and Proteins, in Fig. 13,14,15.
The grey line is the loss on training set and blue line is loss on
validation set. We can see that in both three datasets, the loss
reduces at first and get stable from 30 epochs. And just like most
machine learning approaches, especially neural network, the loss
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on training set can get a lower value than validation set. It is
because the training procedure apply Stochastic Gradient Descent
on loss of training set not the validation set.

4.7 Feature Training

In this experiment, we report a diagonal convolution filter with
its value and its represented subgraph structures. The experiment
is done on MUTAG dataset, with n set to 7, filter width set to 7
and filter number set to 20. We trace the filter from initial state to
trained state. Note that in each epoch in the training procedure, the
filter is modified slightly. Figure 16 reports the results, in which
the x-axis is the epoch number from 0 to 30. Epoch = 0 means the
initial value, which is sampled from a normal distribution. Figure
16 (c) shows the raw filter value, which is a 7 × 7 matrix. Each
cell representing the corresponding position in the filter matrix.
The darker the cell is, the bigger the value is. In other words, the
darkest cell has the value more close to 1 while the white cell has
the value more close to -1, the grey cell has the value around 0.
We can see that in initial stage, more cells are grey, with values
around 0. As we move forward with the training procedure, some
dark cells become lighter and some light cells become darker,
especially in the left top part. While the darkest cells, on the right
bottom part, keep dark during the training. It means that these cells
play important roles in classification of the given dataset of graphs.
This is because the back propagation only modifies the cells that
are non-contributing o the classification of the input graph.

For better understanding the subgraph structure, we draw the
positive subgraph and negative subgraph in Fig. 16(a) and (b)
respectively. The positive subgraph is drawn by setting the cell
as 1 if its value is bigger than 0 and as 0 if its value is smaller
or equal to 0. We call this subgraph a positive subgraph because
it represents the edges that should appear. In the contrast, the
negative subgraph is drawn by setting the cell as 1 if its value is
smaller or equal to 0 and as 1 if its value is bigger than 0. The
negative subgraph denotes the edges that should not appear. We
can see that, both positive graph and negative graph do change
gradually from the initial state in the training procedure and arrive
at the stable structures at the end of the training. It means that the
training procedure eventually reaches the convergence.

4.8 Feature Visualization.

Figure 17 illustrates the subgraph features captured in different
convolution layers. Figure 17(a) presents the input graph of 12
nodes. We show that using NgramCNN, the window-size of n = 4
is sufficient to capture and extract the dense structures of this
graph. We use NgramCNN-L5, set the diagonal convolution filer
of size 4 × 4, the n-gram window size by n = 4, and set the
rest 4 convolution layer filters in size of 3. Thus, the feature
size in each layer is 4, 6, 8, 10, 12. Figure 17(b),(c),(d),(e),(f)
show the patterns learned at each of the five convolution layers
respectively. The adjacency matrix shows the existing probability
of each edge, the darker the cell is, the higher probability that
the corresponding edge is captured by this filter. In the first
layer shown in Figure 17(b), only the basic four node patterns
can be handled. Moving forward to the second layer shown in
Figure 17(c), the filters can capture and represent the six-node
patterns, which are composed by the first layer features. By further
adding more convolution layers, the more complicated subgraph
patterns can be captured and represented. Finally, in Figure 17(f),

the 12-node feature is captured, which is quite similar to the
original input graph in Figure 17(a).

In summary, we demonstrate through extensive experiments
with real world datasets that NgramCNN is competitive and out-
performs the representative state-of-art approaches, represented by
DGK, PSCN and MTL, for classification of graphs. Furthermore,
the deep convolution NgramCNN-L5 outperforms the shallow
NgramCNN-L2 for most datasets.

5 CONCLUSION

We have presented the Ngram convolutional neural network model
for classification of graphs. This paper makes three original
contributions: First, we introduce the concept of n-gram block
to transform raw graph object into a sequence of n-gram blocks
connected through overlapping regions. Second, we introduce n-
gram normalization and diagonal convolution operation to extract
local patterns and connectivity features hidden in the n-gram
blocks. Third but not the least, we develop NgramCNN structure
to extract global patterns based on the local patterns and a series
of stacked convolutional layers built on top of our diagonal
convolution. Our experiments show that NgramCNN outperforms
existing methods with high accuracy and comparable performance.
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